WORST_CASE(?,O(n^1))
* Step 1: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            dx(X) -> one()
            dx(a()) -> zero()
            dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two()))))
            dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA)))
                                       ,times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))
            dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA)
            dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA))
            dx(neg(ALPHA)) -> neg(dx(ALPHA))
            dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA))
            dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA)))
        - Signature:
            {dx/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {dx} and constructors {a,div,exp,ln,minus,neg,one,plus
            ,times,two,zero}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(div) = {1},
            uargs(minus) = {1,2},
            uargs(neg) = {1},
            uargs(plus) = {1,2},
            uargs(times) = {2}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                p(a) = [2]                  
              p(div) = [1] x1 + [0]         
               p(dx) = [2]                  
              p(exp) = [0]                  
               p(ln) = [1]                  
            p(minus) = [1] x1 + [1] x2 + [2]
              p(neg) = [1] x1 + [4]         
              p(one) = [1]                  
             p(plus) = [1] x1 + [1] x2 + [5]
            p(times) = [1] x2 + [1]         
              p(two) = [1]                  
             p(zero) = [0]                  
          
          Following rules are strictly oriented:
            dx(X) = [2]   
                  > [1]   
                  = one() 
          
          dx(a()) = [2]   
                  > [0]   
                  = zero()
          
          
          Following rules are (at-least) weakly oriented:
            dx(div(ALPHA,BETA)) =  [2]                                                                  
                                >= [7]                                                                  
                                =  minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two()))))
          
            dx(exp(ALPHA,BETA)) =  [2]                                                                  
                                >= [13]                                                                 
                                =  plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA)))       
                                       ,times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))               
          
                  dx(ln(ALPHA)) =  [2]                                                                  
                                >= [2]                                                                  
                                =  div(dx(ALPHA),ALPHA)                                                 
          
          dx(minus(ALPHA,BETA)) =  [2]                                                                  
                                >= [6]                                                                  
                                =  minus(dx(ALPHA),dx(BETA))                                            
          
                 dx(neg(ALPHA)) =  [2]                                                                  
                                >= [6]                                                                  
                                =  neg(dx(ALPHA))                                                       
          
           dx(plus(ALPHA,BETA)) =  [2]                                                                  
                                >= [9]                                                                  
                                =  plus(dx(ALPHA),dx(BETA))                                             
          
          dx(times(ALPHA,BETA)) =  [2]                                                                  
                                >= [11]                                                                 
                                =  plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA)))                    
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 2: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two()))))
            dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA)))
                                       ,times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))
            dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA)
            dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA))
            dx(neg(ALPHA)) -> neg(dx(ALPHA))
            dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA))
            dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA)))
        - Weak TRS:
            dx(X) -> one()
            dx(a()) -> zero()
        - Signature:
            {dx/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {dx} and constructors {a,div,exp,ln,minus,neg,one,plus
            ,times,two,zero}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          a :: [] -(0)-> A(13)
          div :: [A(13) x A(13)] -(13)-> A(13)
          div :: [A(0) x A(0)] -(0)-> A(0)
          dx :: [A(13)] -(0)-> A(0)
          exp :: [A(13) x A(13)] -(13)-> A(13)
          exp :: [A(0) x A(0)] -(0)-> A(0)
          ln :: [A(13)] -(13)-> A(13)
          ln :: [A(0)] -(0)-> A(0)
          minus :: [A(13) x A(13)] -(13)-> A(13)
          minus :: [A(0) x A(0)] -(0)-> A(0)
          neg :: [A(13)] -(0)-> A(13)
          neg :: [A(0)] -(0)-> A(0)
          one :: [] -(0)-> A(12)
          one :: [] -(0)-> A(6)
          plus :: [A(13) x A(13)] -(13)-> A(13)
          plus :: [A(0) x A(0)] -(0)-> A(0)
          times :: [A(13) x A(13)] -(13)-> A(13)
          times :: [A(0) x A(0)] -(0)-> A(0)
          two :: [] -(0)-> A(12)
          zero :: [] -(0)-> A(6)
        
        
        Cost-free Signatures used:
        --------------------------
          a :: [] -(0)-> A_cf(0)
          div :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          dx :: [A_cf(0)] -(0)-> A_cf(0)
          exp :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          ln :: [A_cf(0)] -(0)-> A_cf(0)
          minus :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          neg :: [A_cf(0)] -(0)-> A_cf(0)
          one :: [] -(0)-> A_cf(0)
          plus :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          times :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          two :: [] -(0)-> A_cf(0)
          zero :: [] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          a_A :: [] -(0)-> A(1)
          div_A :: [A(1) x A(1)] -(1)-> A(1)
          exp_A :: [A(1) x A(1)] -(1)-> A(1)
          ln_A :: [A(1)] -(1)-> A(1)
          minus_A :: [A(1) x A(1)] -(1)-> A(1)
          neg_A :: [A(1)] -(0)-> A(1)
          one_A :: [] -(0)-> A(1)
          plus_A :: [A(1) x A(1)] -(1)-> A(1)
          times_A :: [A(1) x A(1)] -(1)-> A(1)
          two_A :: [] -(0)-> A(1)
          zero_A :: [] -(0)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA))
        2. Weak:
          dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two()))))
          dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA)))
                                     ,times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))
          dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA)
          dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA))
          dx(neg(ALPHA)) -> neg(dx(ALPHA))
          dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA)))
* Step 3: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two()))))
            dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA)))
                                       ,times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))
            dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA)
            dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA))
            dx(neg(ALPHA)) -> neg(dx(ALPHA))
            dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA)))
        - Weak TRS:
            dx(X) -> one()
            dx(a()) -> zero()
            dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA))
        - Signature:
            {dx/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {dx} and constructors {a,div,exp,ln,minus,neg,one,plus
            ,times,two,zero}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          a :: [] -(0)-> A(15)
          div :: [A(15) x A(15)] -(15)-> A(15)
          div :: [A(0) x A(0)] -(0)-> A(0)
          dx :: [A(15)] -(3)-> A(0)
          exp :: [A(15) x A(15)] -(15)-> A(15)
          exp :: [A(0) x A(0)] -(0)-> A(0)
          ln :: [A(15)] -(15)-> A(15)
          ln :: [A(0)] -(0)-> A(0)
          minus :: [A(15) x A(15)] -(15)-> A(15)
          minus :: [A(0) x A(0)] -(0)-> A(0)
          neg :: [A(15)] -(15)-> A(15)
          neg :: [A(0)] -(0)-> A(0)
          one :: [] -(0)-> A(12)
          one :: [] -(0)-> A(6)
          plus :: [A(15) x A(15)] -(15)-> A(15)
          plus :: [A(0) x A(0)] -(0)-> A(0)
          times :: [A(15) x A(15)] -(15)-> A(15)
          times :: [A(0) x A(0)] -(0)-> A(0)
          two :: [] -(0)-> A(12)
          zero :: [] -(0)-> A(6)
        
        
        Cost-free Signatures used:
        --------------------------
          a :: [] -(0)-> A_cf(0)
          div :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          dx :: [A_cf(0)] -(0)-> A_cf(0)
          exp :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          ln :: [A_cf(0)] -(0)-> A_cf(0)
          minus :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          neg :: [A_cf(0)] -(0)-> A_cf(0)
          one :: [] -(0)-> A_cf(0)
          plus :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          times :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          two :: [] -(0)-> A_cf(0)
          zero :: [] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          a_A :: [] -(0)-> A(1)
          div_A :: [A(1) x A(1)] -(1)-> A(1)
          exp_A :: [A(1) x A(1)] -(1)-> A(1)
          ln_A :: [A(1)] -(1)-> A(1)
          minus_A :: [A(1) x A(1)] -(1)-> A(1)
          neg_A :: [A(1)] -(1)-> A(1)
          one_A :: [] -(0)-> A(1)
          plus_A :: [A(1) x A(1)] -(1)-> A(1)
          times_A :: [A(1) x A(1)] -(1)-> A(1)
          two_A :: [] -(0)-> A(1)
          zero_A :: [] -(0)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA)
          dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA))
          dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA)))
        2. Weak:
          dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two()))))
          dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA)))
                                     ,times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))
          dx(neg(ALPHA)) -> neg(dx(ALPHA))
* Step 4: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two()))))
            dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA)))
                                       ,times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))
            dx(neg(ALPHA)) -> neg(dx(ALPHA))
        - Weak TRS:
            dx(X) -> one()
            dx(a()) -> zero()
            dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA)
            dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA))
            dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA))
            dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA)))
        - Signature:
            {dx/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {dx} and constructors {a,div,exp,ln,minus,neg,one,plus
            ,times,two,zero}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          a :: [] -(0)-> A(15)
          div :: [A(15) x A(15)] -(15)-> A(15)
          div :: [A(0) x A(0)] -(0)-> A(0)
          dx :: [A(15)] -(4)-> A(0)
          exp :: [A(15) x A(15)] -(15)-> A(15)
          exp :: [A(0) x A(0)] -(0)-> A(0)
          ln :: [A(15)] -(15)-> A(15)
          ln :: [A(0)] -(0)-> A(0)
          minus :: [A(15) x A(15)] -(15)-> A(15)
          minus :: [A(0) x A(0)] -(0)-> A(0)
          neg :: [A(15)] -(15)-> A(15)
          neg :: [A(0)] -(0)-> A(0)
          one :: [] -(0)-> A(12)
          one :: [] -(0)-> A(6)
          plus :: [A(15) x A(15)] -(15)-> A(15)
          plus :: [A(0) x A(0)] -(0)-> A(0)
          times :: [A(15) x A(15)] -(15)-> A(15)
          times :: [A(0) x A(0)] -(0)-> A(0)
          two :: [] -(0)-> A(12)
          zero :: [] -(0)-> A(6)
        
        
        Cost-free Signatures used:
        --------------------------
          a :: [] -(0)-> A_cf(0)
          div :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          dx :: [A_cf(0)] -(0)-> A_cf(0)
          exp :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          ln :: [A_cf(0)] -(0)-> A_cf(0)
          minus :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          neg :: [A_cf(0)] -(0)-> A_cf(0)
          one :: [] -(0)-> A_cf(0)
          plus :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          times :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          two :: [] -(0)-> A_cf(0)
          zero :: [] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          a_A :: [] -(0)-> A(1)
          div_A :: [A(1) x A(1)] -(1)-> A(1)
          exp_A :: [A(1) x A(1)] -(1)-> A(1)
          ln_A :: [A(1)] -(1)-> A(1)
          minus_A :: [A(1) x A(1)] -(1)-> A(1)
          neg_A :: [A(1)] -(1)-> A(1)
          one_A :: [] -(0)-> A(1)
          plus_A :: [A(1) x A(1)] -(1)-> A(1)
          times_A :: [A(1) x A(1)] -(1)-> A(1)
          two_A :: [] -(0)-> A(1)
          zero_A :: [] -(0)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          dx(neg(ALPHA)) -> neg(dx(ALPHA))
        2. Weak:
          dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two()))))
          dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA)))
                                     ,times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))
* Step 5: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two()))))
            dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA)))
                                       ,times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))
        - Weak TRS:
            dx(X) -> one()
            dx(a()) -> zero()
            dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA)
            dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA))
            dx(neg(ALPHA)) -> neg(dx(ALPHA))
            dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA))
            dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA)))
        - Signature:
            {dx/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {dx} and constructors {a,div,exp,ln,minus,neg,one,plus
            ,times,two,zero}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          a :: [] -(0)-> A(14)
          div :: [A(14) x A(14)] -(14)-> A(14)
          div :: [A(0) x A(0)] -(0)-> A(0)
          dx :: [A(14)] -(0)-> A(0)
          exp :: [A(14) x A(14)] -(14)-> A(14)
          exp :: [A(0) x A(0)] -(0)-> A(0)
          ln :: [A(14)] -(14)-> A(14)
          ln :: [A(0)] -(0)-> A(0)
          minus :: [A(14) x A(14)] -(14)-> A(14)
          minus :: [A(0) x A(0)] -(0)-> A(0)
          neg :: [A(14)] -(14)-> A(14)
          neg :: [A(0)] -(0)-> A(0)
          one :: [] -(0)-> A(12)
          one :: [] -(0)-> A(6)
          plus :: [A(14) x A(14)] -(14)-> A(14)
          plus :: [A(0) x A(0)] -(0)-> A(0)
          times :: [A(14) x A(14)] -(14)-> A(14)
          times :: [A(0) x A(0)] -(0)-> A(0)
          two :: [] -(0)-> A(12)
          zero :: [] -(0)-> A(6)
        
        
        Cost-free Signatures used:
        --------------------------
          a :: [] -(0)-> A_cf(0)
          div :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          dx :: [A_cf(0)] -(0)-> A_cf(0)
          exp :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          ln :: [A_cf(0)] -(0)-> A_cf(0)
          minus :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          neg :: [A_cf(0)] -(0)-> A_cf(0)
          one :: [] -(0)-> A_cf(0)
          plus :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          times :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          two :: [] -(0)-> A_cf(0)
          zero :: [] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          a_A :: [] -(0)-> A(1)
          div_A :: [A(1) x A(1)] -(1)-> A(1)
          exp_A :: [A(1) x A(1)] -(1)-> A(1)
          ln_A :: [A(1)] -(1)-> A(1)
          minus_A :: [A(1) x A(1)] -(1)-> A(1)
          neg_A :: [A(1)] -(1)-> A(1)
          one_A :: [] -(0)-> A(1)
          plus_A :: [A(1) x A(1)] -(1)-> A(1)
          times_A :: [A(1) x A(1)] -(1)-> A(1)
          two_A :: [] -(0)-> A(1)
          zero_A :: [] -(0)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two()))))
        2. Weak:
          dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA)))
                                     ,times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))
* Step 6: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA)))
                                       ,times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))
        - Weak TRS:
            dx(X) -> one()
            dx(a()) -> zero()
            dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two()))))
            dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA)
            dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA))
            dx(neg(ALPHA)) -> neg(dx(ALPHA))
            dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA))
            dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA)))
        - Signature:
            {dx/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {dx} and constructors {a,div,exp,ln,minus,neg,one,plus
            ,times,two,zero}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          a :: [] -(0)-> A(14)
          div :: [A(14) x A(14)] -(14)-> A(14)
          div :: [A(0) x A(0)] -(0)-> A(0)
          dx :: [A(14)] -(0)-> A(0)
          exp :: [A(14) x A(14)] -(14)-> A(14)
          exp :: [A(0) x A(0)] -(0)-> A(0)
          ln :: [A(14)] -(14)-> A(14)
          ln :: [A(0)] -(0)-> A(0)
          minus :: [A(14) x A(14)] -(14)-> A(14)
          minus :: [A(0) x A(0)] -(0)-> A(0)
          neg :: [A(14)] -(14)-> A(14)
          neg :: [A(0)] -(0)-> A(0)
          one :: [] -(0)-> A(12)
          one :: [] -(0)-> A(6)
          plus :: [A(14) x A(14)] -(14)-> A(14)
          plus :: [A(0) x A(0)] -(0)-> A(0)
          times :: [A(14) x A(14)] -(14)-> A(14)
          times :: [A(0) x A(0)] -(0)-> A(0)
          two :: [] -(0)-> A(12)
          zero :: [] -(0)-> A(6)
        
        
        Cost-free Signatures used:
        --------------------------
          a :: [] -(0)-> A_cf(0)
          div :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          dx :: [A_cf(0)] -(0)-> A_cf(0)
          exp :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          ln :: [A_cf(0)] -(0)-> A_cf(0)
          minus :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          neg :: [A_cf(0)] -(0)-> A_cf(0)
          one :: [] -(0)-> A_cf(0)
          plus :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          times :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          two :: [] -(0)-> A_cf(0)
          zero :: [] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          a_A :: [] -(0)-> A(1)
          div_A :: [A(1) x A(1)] -(1)-> A(1)
          exp_A :: [A(1) x A(1)] -(1)-> A(1)
          ln_A :: [A(1)] -(1)-> A(1)
          minus_A :: [A(1) x A(1)] -(1)-> A(1)
          neg_A :: [A(1)] -(1)-> A(1)
          one_A :: [] -(0)-> A(1)
          plus_A :: [A(1) x A(1)] -(1)-> A(1)
          times_A :: [A(1) x A(1)] -(1)-> A(1)
          two_A :: [] -(0)-> A(1)
          zero_A :: [] -(0)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA)))
                                     ,times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))
        2. Weak:
          
* Step 7: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            dx(X) -> one()
            dx(a()) -> zero()
            dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two()))))
            dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA)))
                                       ,times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))
            dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA)
            dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA))
            dx(neg(ALPHA)) -> neg(dx(ALPHA))
            dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA))
            dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA)))
        - Signature:
            {dx/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {dx} and constructors {a,div,exp,ln,minus,neg,one,plus
            ,times,two,zero}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))