MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            from(X) -> cons(X,from(s(X)))
            sel(0(),cons(X,Y)) -> X
            sel(s(X),cons(Y,Z)) -> sel(X,Z)
        - Signature:
            {from/1,sel/2} / {0/0,cons/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {from,sel} and constructors {0,cons,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          from#(X) -> c_1(from#(s(X)))
          sel#(0(),cons(X,Y)) -> c_2()
          sel#(s(X),cons(Y,Z)) -> c_3(sel#(X,Z))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            from#(X) -> c_1(from#(s(X)))
            sel#(0(),cons(X,Y)) -> c_2()
            sel#(s(X),cons(Y,Z)) -> c_3(sel#(X,Z))
        - Weak TRS:
            from(X) -> cons(X,from(s(X)))
            sel(0(),cons(X,Y)) -> X
            sel(s(X),cons(Y,Z)) -> sel(X,Z)
        - Signature:
            {from/1,sel/2,from#/1,sel#/2} / {0/0,cons/2,s/1,c_1/1,c_2/0,c_3/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {from#,sel#} and constructors {0,cons,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          from#(X) -> c_1(from#(s(X)))
          sel#(0(),cons(X,Y)) -> c_2()
          sel#(s(X),cons(Y,Z)) -> c_3(sel#(X,Z))
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            from#(X) -> c_1(from#(s(X)))
            sel#(0(),cons(X,Y)) -> c_2()
            sel#(s(X),cons(Y,Z)) -> c_3(sel#(X,Z))
        - Signature:
            {from/1,sel/2,from#/1,sel#/2} / {0/0,cons/2,s/1,c_1/1,c_2/0,c_3/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {from#,sel#} and constructors {0,cons,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2}
        by application of
          Pre({2}) = {3}.
        Here rules are labelled as follows:
          1: from#(X) -> c_1(from#(s(X)))
          2: sel#(0(),cons(X,Y)) -> c_2()
          3: sel#(s(X),cons(Y,Z)) -> c_3(sel#(X,Z))
* Step 4: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            from#(X) -> c_1(from#(s(X)))
            sel#(s(X),cons(Y,Z)) -> c_3(sel#(X,Z))
        - Weak DPs:
            sel#(0(),cons(X,Y)) -> c_2()
        - Signature:
            {from/1,sel/2,from#/1,sel#/2} / {0/0,cons/2,s/1,c_1/1,c_2/0,c_3/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {from#,sel#} and constructors {0,cons,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:from#(X) -> c_1(from#(s(X)))
             -->_1 from#(X) -> c_1(from#(s(X))):1
          
          2:S:sel#(s(X),cons(Y,Z)) -> c_3(sel#(X,Z))
             -->_1 sel#(0(),cons(X,Y)) -> c_2():3
             -->_1 sel#(s(X),cons(Y,Z)) -> c_3(sel#(X,Z)):2
          
          3:W:sel#(0(),cons(X,Y)) -> c_2()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: sel#(0(),cons(X,Y)) -> c_2()
* Step 5: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          from#(X) -> c_1(from#(s(X)))
          sel#(s(X),cons(Y,Z)) -> c_3(sel#(X,Z))
      - Signature:
          {from/1,sel/2,from#/1,sel#/2} / {0/0,cons/2,s/1,c_1/1,c_2/0,c_3/1}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {from#,sel#} and constructors {0,cons,s}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE