MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) dbls(cons(X,Y)) -> cons(dbl(X),dbls(Y)) dbls(nil()) -> nil() from(X) -> cons(X,from(s(X))) indx(cons(X,Y),Z) -> cons(sel(X,Z),indx(Y,Z)) indx(nil(),X) -> nil() sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,Z) - Signature: {dbl/1,dbls/1,from/1,indx/2,sel/2} / {0/0,cons/2,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {dbl,dbls,from,indx,sel} and constructors {0,cons,nil,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs dbl#(0()) -> c_1() dbl#(s(X)) -> c_2(dbl#(X)) dbls#(cons(X,Y)) -> c_3(dbl#(X),dbls#(Y)) dbls#(nil()) -> c_4() from#(X) -> c_5(from#(s(X))) indx#(cons(X,Y),Z) -> c_6(sel#(X,Z),indx#(Y,Z)) indx#(nil(),X) -> c_7() sel#(0(),cons(X,Y)) -> c_8() sel#(s(X),cons(Y,Z)) -> c_9(sel#(X,Z)) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: dbl#(0()) -> c_1() dbl#(s(X)) -> c_2(dbl#(X)) dbls#(cons(X,Y)) -> c_3(dbl#(X),dbls#(Y)) dbls#(nil()) -> c_4() from#(X) -> c_5(from#(s(X))) indx#(cons(X,Y),Z) -> c_6(sel#(X,Z),indx#(Y,Z)) indx#(nil(),X) -> c_7() sel#(0(),cons(X,Y)) -> c_8() sel#(s(X),cons(Y,Z)) -> c_9(sel#(X,Z)) - Weak TRS: dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) dbls(cons(X,Y)) -> cons(dbl(X),dbls(Y)) dbls(nil()) -> nil() from(X) -> cons(X,from(s(X))) indx(cons(X,Y),Z) -> cons(sel(X,Z),indx(Y,Z)) indx(nil(),X) -> nil() sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,Z) - Signature: {dbl/1,dbls/1,from/1,indx/2,sel/2,dbl#/1,dbls#/1,from#/1,indx#/2,sel#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1 ,c_3/2,c_4/0,c_5/1,c_6/2,c_7/0,c_8/0,c_9/1} - Obligation: innermost runtime complexity wrt. defined symbols {dbl#,dbls#,from#,indx#,sel#} and constructors {0,cons,nil ,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: dbl#(0()) -> c_1() dbl#(s(X)) -> c_2(dbl#(X)) dbls#(cons(X,Y)) -> c_3(dbl#(X),dbls#(Y)) dbls#(nil()) -> c_4() from#(X) -> c_5(from#(s(X))) indx#(cons(X,Y),Z) -> c_6(sel#(X,Z),indx#(Y,Z)) indx#(nil(),X) -> c_7() sel#(0(),cons(X,Y)) -> c_8() sel#(s(X),cons(Y,Z)) -> c_9(sel#(X,Z)) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: dbl#(0()) -> c_1() dbl#(s(X)) -> c_2(dbl#(X)) dbls#(cons(X,Y)) -> c_3(dbl#(X),dbls#(Y)) dbls#(nil()) -> c_4() from#(X) -> c_5(from#(s(X))) indx#(cons(X,Y),Z) -> c_6(sel#(X,Z),indx#(Y,Z)) indx#(nil(),X) -> c_7() sel#(0(),cons(X,Y)) -> c_8() sel#(s(X),cons(Y,Z)) -> c_9(sel#(X,Z)) - Signature: {dbl/1,dbls/1,from/1,indx/2,sel/2,dbl#/1,dbls#/1,from#/1,indx#/2,sel#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1 ,c_3/2,c_4/0,c_5/1,c_6/2,c_7/0,c_8/0,c_9/1} - Obligation: innermost runtime complexity wrt. defined symbols {dbl#,dbls#,from#,indx#,sel#} and constructors {0,cons,nil ,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,4,7,8} by application of Pre({1,4,7,8}) = {2,3,6,9}. Here rules are labelled as follows: 1: dbl#(0()) -> c_1() 2: dbl#(s(X)) -> c_2(dbl#(X)) 3: dbls#(cons(X,Y)) -> c_3(dbl#(X),dbls#(Y)) 4: dbls#(nil()) -> c_4() 5: from#(X) -> c_5(from#(s(X))) 6: indx#(cons(X,Y),Z) -> c_6(sel#(X,Z),indx#(Y,Z)) 7: indx#(nil(),X) -> c_7() 8: sel#(0(),cons(X,Y)) -> c_8() 9: sel#(s(X),cons(Y,Z)) -> c_9(sel#(X,Z)) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: dbl#(s(X)) -> c_2(dbl#(X)) dbls#(cons(X,Y)) -> c_3(dbl#(X),dbls#(Y)) from#(X) -> c_5(from#(s(X))) indx#(cons(X,Y),Z) -> c_6(sel#(X,Z),indx#(Y,Z)) sel#(s(X),cons(Y,Z)) -> c_9(sel#(X,Z)) - Weak DPs: dbl#(0()) -> c_1() dbls#(nil()) -> c_4() indx#(nil(),X) -> c_7() sel#(0(),cons(X,Y)) -> c_8() - Signature: {dbl/1,dbls/1,from/1,indx/2,sel/2,dbl#/1,dbls#/1,from#/1,indx#/2,sel#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1 ,c_3/2,c_4/0,c_5/1,c_6/2,c_7/0,c_8/0,c_9/1} - Obligation: innermost runtime complexity wrt. defined symbols {dbl#,dbls#,from#,indx#,sel#} and constructors {0,cons,nil ,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:dbl#(s(X)) -> c_2(dbl#(X)) -->_1 dbl#(0()) -> c_1():6 -->_1 dbl#(s(X)) -> c_2(dbl#(X)):1 2:S:dbls#(cons(X,Y)) -> c_3(dbl#(X),dbls#(Y)) -->_2 dbls#(nil()) -> c_4():7 -->_1 dbl#(0()) -> c_1():6 -->_2 dbls#(cons(X,Y)) -> c_3(dbl#(X),dbls#(Y)):2 -->_1 dbl#(s(X)) -> c_2(dbl#(X)):1 3:S:from#(X) -> c_5(from#(s(X))) -->_1 from#(X) -> c_5(from#(s(X))):3 4:S:indx#(cons(X,Y),Z) -> c_6(sel#(X,Z),indx#(Y,Z)) -->_1 sel#(s(X),cons(Y,Z)) -> c_9(sel#(X,Z)):5 -->_1 sel#(0(),cons(X,Y)) -> c_8():9 -->_2 indx#(nil(),X) -> c_7():8 -->_2 indx#(cons(X,Y),Z) -> c_6(sel#(X,Z),indx#(Y,Z)):4 5:S:sel#(s(X),cons(Y,Z)) -> c_9(sel#(X,Z)) -->_1 sel#(0(),cons(X,Y)) -> c_8():9 -->_1 sel#(s(X),cons(Y,Z)) -> c_9(sel#(X,Z)):5 6:W:dbl#(0()) -> c_1() 7:W:dbls#(nil()) -> c_4() 8:W:indx#(nil(),X) -> c_7() 9:W:sel#(0(),cons(X,Y)) -> c_8() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 8: indx#(nil(),X) -> c_7() 9: sel#(0(),cons(X,Y)) -> c_8() 7: dbls#(nil()) -> c_4() 6: dbl#(0()) -> c_1() * Step 5: Failure MAYBE + Considered Problem: - Strict DPs: dbl#(s(X)) -> c_2(dbl#(X)) dbls#(cons(X,Y)) -> c_3(dbl#(X),dbls#(Y)) from#(X) -> c_5(from#(s(X))) indx#(cons(X,Y),Z) -> c_6(sel#(X,Z),indx#(Y,Z)) sel#(s(X),cons(Y,Z)) -> c_9(sel#(X,Z)) - Signature: {dbl/1,dbls/1,from/1,indx/2,sel/2,dbl#/1,dbls#/1,from#/1,indx#/2,sel#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1 ,c_3/2,c_4/0,c_5/1,c_6/2,c_7/0,c_8/0,c_9/1} - Obligation: innermost runtime complexity wrt. defined symbols {dbl#,dbls#,from#,indx#,sel#} and constructors {0,cons,nil ,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE