MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: f(0()) -> cons(0(),f(s(0()))) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() - Signature: {f/1,p/1} / {0/0,cons/2,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,p} and constructors {0,cons,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(0()) -> c_1(f#(s(0()))) f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) p#(s(0())) -> c_3() Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: f#(0()) -> c_1(f#(s(0()))) f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) p#(s(0())) -> c_3() - Weak TRS: f(0()) -> cons(0(),f(s(0()))) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() - Signature: {f/1,p/1,f#/1,p#/1} / {0/0,cons/2,s/1,c_1/1,c_2/2,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,p#} and constructors {0,cons,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: p(s(0())) -> 0() f#(0()) -> c_1(f#(s(0()))) f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) p#(s(0())) -> c_3() * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: f#(0()) -> c_1(f#(s(0()))) f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) p#(s(0())) -> c_3() - Weak TRS: p(s(0())) -> 0() - Signature: {f/1,p/1,f#/1,p#/1} / {0/0,cons/2,s/1,c_1/1,c_2/2,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,p#} and constructors {0,cons,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3} by application of Pre({3}) = {2}. Here rules are labelled as follows: 1: f#(0()) -> c_1(f#(s(0()))) 2: f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) 3: p#(s(0())) -> c_3() * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: f#(0()) -> c_1(f#(s(0()))) f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) - Weak DPs: p#(s(0())) -> c_3() - Weak TRS: p(s(0())) -> 0() - Signature: {f/1,p/1,f#/1,p#/1} / {0/0,cons/2,s/1,c_1/1,c_2/2,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,p#} and constructors {0,cons,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(0()) -> c_1(f#(s(0()))) -->_1 f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))):2 2:S:f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) -->_2 p#(s(0())) -> c_3():3 -->_1 f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))):2 -->_1 f#(0()) -> c_1(f#(s(0()))):1 3:W:p#(s(0())) -> c_3() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: p#(s(0())) -> c_3() * Step 5: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: f#(0()) -> c_1(f#(s(0()))) f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) - Weak TRS: p(s(0())) -> 0() - Signature: {f/1,p/1,f#/1,p#/1} / {0/0,cons/2,s/1,c_1/1,c_2/2,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,p#} and constructors {0,cons,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:f#(0()) -> c_1(f#(s(0()))) -->_1 f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))):2 2:S:f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) -->_1 f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))):2 -->_1 f#(0()) -> c_1(f#(s(0()))):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: f#(s(0())) -> c_2(f#(p(s(0())))) * Step 6: WeightGap MAYBE + Considered Problem: - Strict DPs: f#(0()) -> c_1(f#(s(0()))) f#(s(0())) -> c_2(f#(p(s(0())))) - Weak TRS: p(s(0())) -> 0() - Signature: {f/1,p/1,f#/1,p#/1} / {0/0,cons/2,s/1,c_1/1,c_2/1,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,p#} and constructors {0,cons,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(f#) = {1}, uargs(c_1) = {1}, uargs(c_2) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(cons) = [0] p(f) = [0] p(p) = [0] p(s) = [11] p(f#) = [1] x1 + [0] p(p#) = [0] p(c_1) = [1] x1 + [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] Following rules are strictly oriented: f#(s(0())) = [11] > [0] = c_2(f#(p(s(0())))) Following rules are (at-least) weakly oriented: f#(0()) = [0] >= [11] = c_1(f#(s(0()))) p(s(0())) = [0] >= [0] = 0() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 7: Failure MAYBE + Considered Problem: - Strict DPs: f#(0()) -> c_1(f#(s(0()))) - Weak DPs: f#(s(0())) -> c_2(f#(p(s(0())))) - Weak TRS: p(s(0())) -> 0() - Signature: {f/1,p/1,f#/1,p#/1} / {0/0,cons/2,s/1,c_1/1,c_2/1,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,p#} and constructors {0,cons,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE