MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: adx(cons(X,L)) -> incr(cons(X,adx(L))) adx(nil()) -> nil() head(cons(X,L)) -> X incr(cons(X,L)) -> cons(s(X),incr(L)) incr(nil()) -> nil() nats() -> adx(zeros()) tail(cons(X,L)) -> L zeros() -> cons(0(),zeros()) - Signature: {adx/1,head/1,incr/1,nats/0,tail/1,zeros/0} / {0/0,cons/2,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {adx,head,incr,nats,tail,zeros} and constructors {0,cons ,nil,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs adx#(cons(X,L)) -> c_1(incr#(cons(X,adx(L))),adx#(L)) adx#(nil()) -> c_2() head#(cons(X,L)) -> c_3() incr#(cons(X,L)) -> c_4(incr#(L)) incr#(nil()) -> c_5() nats#() -> c_6(adx#(zeros()),zeros#()) tail#(cons(X,L)) -> c_7() zeros#() -> c_8(zeros#()) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: adx#(cons(X,L)) -> c_1(incr#(cons(X,adx(L))),adx#(L)) adx#(nil()) -> c_2() head#(cons(X,L)) -> c_3() incr#(cons(X,L)) -> c_4(incr#(L)) incr#(nil()) -> c_5() nats#() -> c_6(adx#(zeros()),zeros#()) tail#(cons(X,L)) -> c_7() zeros#() -> c_8(zeros#()) - Weak TRS: adx(cons(X,L)) -> incr(cons(X,adx(L))) adx(nil()) -> nil() head(cons(X,L)) -> X incr(cons(X,L)) -> cons(s(X),incr(L)) incr(nil()) -> nil() nats() -> adx(zeros()) tail(cons(X,L)) -> L zeros() -> cons(0(),zeros()) - Signature: {adx/1,head/1,incr/1,nats/0,tail/1,zeros/0,adx#/1,head#/1,incr#/1,nats#/0,tail#/1,zeros#/0} / {0/0,cons/2 ,nil/0,s/1,c_1/2,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {adx#,head#,incr#,nats#,tail#,zeros#} and constructors {0 ,cons,nil,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: adx(cons(X,L)) -> incr(cons(X,adx(L))) adx(nil()) -> nil() incr(cons(X,L)) -> cons(s(X),incr(L)) incr(nil()) -> nil() zeros() -> cons(0(),zeros()) adx#(cons(X,L)) -> c_1(incr#(cons(X,adx(L))),adx#(L)) adx#(nil()) -> c_2() head#(cons(X,L)) -> c_3() incr#(cons(X,L)) -> c_4(incr#(L)) incr#(nil()) -> c_5() nats#() -> c_6(adx#(zeros()),zeros#()) tail#(cons(X,L)) -> c_7() zeros#() -> c_8(zeros#()) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: adx#(cons(X,L)) -> c_1(incr#(cons(X,adx(L))),adx#(L)) adx#(nil()) -> c_2() head#(cons(X,L)) -> c_3() incr#(cons(X,L)) -> c_4(incr#(L)) incr#(nil()) -> c_5() nats#() -> c_6(adx#(zeros()),zeros#()) tail#(cons(X,L)) -> c_7() zeros#() -> c_8(zeros#()) - Weak TRS: adx(cons(X,L)) -> incr(cons(X,adx(L))) adx(nil()) -> nil() incr(cons(X,L)) -> cons(s(X),incr(L)) incr(nil()) -> nil() zeros() -> cons(0(),zeros()) - Signature: {adx/1,head/1,incr/1,nats/0,tail/1,zeros/0,adx#/1,head#/1,incr#/1,nats#/0,tail#/1,zeros#/0} / {0/0,cons/2 ,nil/0,s/1,c_1/2,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {adx#,head#,incr#,nats#,tail#,zeros#} and constructors {0 ,cons,nil,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,3,5,7} by application of Pre({2,3,5,7}) = {1,4,6}. Here rules are labelled as follows: 1: adx#(cons(X,L)) -> c_1(incr#(cons(X,adx(L))),adx#(L)) 2: adx#(nil()) -> c_2() 3: head#(cons(X,L)) -> c_3() 4: incr#(cons(X,L)) -> c_4(incr#(L)) 5: incr#(nil()) -> c_5() 6: nats#() -> c_6(adx#(zeros()),zeros#()) 7: tail#(cons(X,L)) -> c_7() 8: zeros#() -> c_8(zeros#()) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: adx#(cons(X,L)) -> c_1(incr#(cons(X,adx(L))),adx#(L)) incr#(cons(X,L)) -> c_4(incr#(L)) nats#() -> c_6(adx#(zeros()),zeros#()) zeros#() -> c_8(zeros#()) - Weak DPs: adx#(nil()) -> c_2() head#(cons(X,L)) -> c_3() incr#(nil()) -> c_5() tail#(cons(X,L)) -> c_7() - Weak TRS: adx(cons(X,L)) -> incr(cons(X,adx(L))) adx(nil()) -> nil() incr(cons(X,L)) -> cons(s(X),incr(L)) incr(nil()) -> nil() zeros() -> cons(0(),zeros()) - Signature: {adx/1,head/1,incr/1,nats/0,tail/1,zeros/0,adx#/1,head#/1,incr#/1,nats#/0,tail#/1,zeros#/0} / {0/0,cons/2 ,nil/0,s/1,c_1/2,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {adx#,head#,incr#,nats#,tail#,zeros#} and constructors {0 ,cons,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:adx#(cons(X,L)) -> c_1(incr#(cons(X,adx(L))),adx#(L)) -->_1 incr#(cons(X,L)) -> c_4(incr#(L)):2 -->_2 adx#(nil()) -> c_2():5 -->_2 adx#(cons(X,L)) -> c_1(incr#(cons(X,adx(L))),adx#(L)):1 2:S:incr#(cons(X,L)) -> c_4(incr#(L)) -->_1 incr#(nil()) -> c_5():7 -->_1 incr#(cons(X,L)) -> c_4(incr#(L)):2 3:S:nats#() -> c_6(adx#(zeros()),zeros#()) -->_2 zeros#() -> c_8(zeros#()):4 -->_1 adx#(nil()) -> c_2():5 -->_1 adx#(cons(X,L)) -> c_1(incr#(cons(X,adx(L))),adx#(L)):1 4:S:zeros#() -> c_8(zeros#()) -->_1 zeros#() -> c_8(zeros#()):4 5:W:adx#(nil()) -> c_2() 6:W:head#(cons(X,L)) -> c_3() 7:W:incr#(nil()) -> c_5() 8:W:tail#(cons(X,L)) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 8: tail#(cons(X,L)) -> c_7() 6: head#(cons(X,L)) -> c_3() 5: adx#(nil()) -> c_2() 7: incr#(nil()) -> c_5() * Step 5: NaturalMI MAYBE + Considered Problem: - Strict DPs: adx#(cons(X,L)) -> c_1(incr#(cons(X,adx(L))),adx#(L)) incr#(cons(X,L)) -> c_4(incr#(L)) nats#() -> c_6(adx#(zeros()),zeros#()) zeros#() -> c_8(zeros#()) - Weak TRS: adx(cons(X,L)) -> incr(cons(X,adx(L))) adx(nil()) -> nil() incr(cons(X,L)) -> cons(s(X),incr(L)) incr(nil()) -> nil() zeros() -> cons(0(),zeros()) - Signature: {adx/1,head/1,incr/1,nats/0,tail/1,zeros/0,adx#/1,head#/1,incr#/1,nats#/0,tail#/1,zeros#/0} / {0/0,cons/2 ,nil/0,s/1,c_1/2,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {adx#,head#,incr#,nats#,tail#,zeros#} and constructors {0 ,cons,nil,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_4) = {1}, uargs(c_6) = {1,2}, uargs(c_8) = {1} Following symbols are considered usable: {zeros,adx#,head#,incr#,nats#,tail#,zeros#} TcT has computed the following interpretation: p(0) = [1] p(adx) = [3] p(cons) = [10] p(head) = [1] x1 + [1] p(incr) = [1] x1 + [8] p(nats) = [0] p(nil) = [8] p(s) = [1] p(tail) = [0] p(zeros) = [13] p(adx#) = [0] p(head#) = [1] p(incr#) = [0] p(nats#) = [9] p(tail#) = [4] x1 + [1] p(zeros#) = [0] p(c_1) = [4] x1 + [8] x2 + [0] p(c_2) = [0] p(c_3) = [1] p(c_4) = [4] x1 + [0] p(c_5) = [0] p(c_6) = [8] x1 + [2] x2 + [2] p(c_7) = [0] p(c_8) = [8] x1 + [0] Following rules are strictly oriented: nats#() = [9] > [2] = c_6(adx#(zeros()),zeros#()) Following rules are (at-least) weakly oriented: adx#(cons(X,L)) = [0] >= [0] = c_1(incr#(cons(X,adx(L))),adx#(L)) incr#(cons(X,L)) = [0] >= [0] = c_4(incr#(L)) zeros#() = [0] >= [0] = c_8(zeros#()) zeros() = [13] >= [10] = cons(0(),zeros()) * Step 6: Failure MAYBE + Considered Problem: - Strict DPs: adx#(cons(X,L)) -> c_1(incr#(cons(X,adx(L))),adx#(L)) incr#(cons(X,L)) -> c_4(incr#(L)) zeros#() -> c_8(zeros#()) - Weak DPs: nats#() -> c_6(adx#(zeros()),zeros#()) - Weak TRS: adx(cons(X,L)) -> incr(cons(X,adx(L))) adx(nil()) -> nil() incr(cons(X,L)) -> cons(s(X),incr(L)) incr(nil()) -> nil() zeros() -> cons(0(),zeros()) - Signature: {adx/1,head/1,incr/1,nats/0,tail/1,zeros/0,adx#/1,head#/1,incr#/1,nats#/0,tail#/1,zeros#/0} / {0/0,cons/2 ,nil/0,s/1,c_1/2,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {adx#,head#,incr#,nats#,tail#,zeros#} and constructors {0 ,cons,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE