WORST_CASE(?,O(n^2)) * Step 1: InnermostRuleRemoval WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: 2ndsneg(0(),Z) -> rnil() 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(0(),Z) -> rnil() 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1 ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) All above mentioned rules can be savely removed. * Step 2: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1 ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_2() activate#(X) -> c_3() activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)) activate#(n__from(X)) -> c_5(from#(X)) cons#(X1,X2) -> c_6() from#(X) -> c_7(cons#(X,n__from(s(X)))) from#(X) -> c_8() pi#(X) -> c_9(2ndspos#(X,from(0())),from#(0())) plus#(0(),Y) -> c_10() plus#(s(X),Y) -> c_11(plus#(X,Y)) square#(X) -> c_12(times#(X,X)) times#(0(),Y) -> c_13() times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) Weak DPs and mark the set of starting terms. * Step 3: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_2() activate#(X) -> c_3() activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)) activate#(n__from(X)) -> c_5(from#(X)) cons#(X1,X2) -> c_6() from#(X) -> c_7(cons#(X,n__from(s(X)))) from#(X) -> c_8() pi#(X) -> c_9(2ndspos#(X,from(0())),from#(0())) plus#(0(),Y) -> c_10() plus#(s(X),Y) -> c_11(plus#(X,Y)) square#(X) -> c_12(times#(X,X)) times#(0(),Y) -> c_13() times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_2() activate#(X) -> c_3() activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)) activate#(n__from(X)) -> c_5(from#(X)) cons#(X1,X2) -> c_6() from#(X) -> c_7(cons#(X,n__from(s(X)))) from#(X) -> c_8() pi#(X) -> c_9(2ndspos#(X,from(0())),from#(0())) plus#(0(),Y) -> c_10() plus#(s(X),Y) -> c_11(plus#(X,Y)) square#(X) -> c_12(times#(X,X)) times#(0(),Y) -> c_13() times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) * Step 4: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_2() activate#(X) -> c_3() activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)) activate#(n__from(X)) -> c_5(from#(X)) cons#(X1,X2) -> c_6() from#(X) -> c_7(cons#(X,n__from(s(X)))) from#(X) -> c_8() pi#(X) -> c_9(2ndspos#(X,from(0())),from#(0())) plus#(0(),Y) -> c_10() plus#(s(X),Y) -> c_11(plus#(X,Y)) square#(X) -> c_12(times#(X,X)) times#(0(),Y) -> c_13() times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak TRS: cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2,3,6,8,10,13} by application of Pre({1,2,3,6,8,10,13}) = {4,5,7,9,11,12,14}. Here rules are labelled as follows: 1: 2ndsneg#(0(),Z) -> c_1() 2: 2ndspos#(0(),Z) -> c_2() 3: activate#(X) -> c_3() 4: activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)) 5: activate#(n__from(X)) -> c_5(from#(X)) 6: cons#(X1,X2) -> c_6() 7: from#(X) -> c_7(cons#(X,n__from(s(X)))) 8: from#(X) -> c_8() 9: pi#(X) -> c_9(2ndspos#(X,from(0())),from#(0())) 10: plus#(0(),Y) -> c_10() 11: plus#(s(X),Y) -> c_11(plus#(X,Y)) 12: square#(X) -> c_12(times#(X,X)) 13: times#(0(),Y) -> c_13() 14: times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) * Step 5: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)) activate#(n__from(X)) -> c_5(from#(X)) from#(X) -> c_7(cons#(X,n__from(s(X)))) pi#(X) -> c_9(2ndspos#(X,from(0())),from#(0())) plus#(s(X),Y) -> c_11(plus#(X,Y)) square#(X) -> c_12(times#(X,X)) times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak DPs: 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_2() activate#(X) -> c_3() cons#(X1,X2) -> c_6() from#(X) -> c_8() plus#(0(),Y) -> c_10() times#(0(),Y) -> c_13() - Weak TRS: cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3} by application of Pre({1,3}) = {2,4}. Here rules are labelled as follows: 1: activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)) 2: activate#(n__from(X)) -> c_5(from#(X)) 3: from#(X) -> c_7(cons#(X,n__from(s(X)))) 4: pi#(X) -> c_9(2ndspos#(X,from(0())),from#(0())) 5: plus#(s(X),Y) -> c_11(plus#(X,Y)) 6: square#(X) -> c_12(times#(X,X)) 7: times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) 8: 2ndsneg#(0(),Z) -> c_1() 9: 2ndspos#(0(),Z) -> c_2() 10: activate#(X) -> c_3() 11: cons#(X1,X2) -> c_6() 12: from#(X) -> c_8() 13: plus#(0(),Y) -> c_10() 14: times#(0(),Y) -> c_13() * Step 6: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: activate#(n__from(X)) -> c_5(from#(X)) pi#(X) -> c_9(2ndspos#(X,from(0())),from#(0())) plus#(s(X),Y) -> c_11(plus#(X,Y)) square#(X) -> c_12(times#(X,X)) times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak DPs: 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_2() activate#(X) -> c_3() activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)) cons#(X1,X2) -> c_6() from#(X) -> c_7(cons#(X,n__from(s(X)))) from#(X) -> c_8() plus#(0(),Y) -> c_10() times#(0(),Y) -> c_13() - Weak TRS: cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2} by application of Pre({1,2}) = {}. Here rules are labelled as follows: 1: activate#(n__from(X)) -> c_5(from#(X)) 2: pi#(X) -> c_9(2ndspos#(X,from(0())),from#(0())) 3: plus#(s(X),Y) -> c_11(plus#(X,Y)) 4: square#(X) -> c_12(times#(X,X)) 5: times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) 6: 2ndsneg#(0(),Z) -> c_1() 7: 2ndspos#(0(),Z) -> c_2() 8: activate#(X) -> c_3() 9: activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)) 10: cons#(X1,X2) -> c_6() 11: from#(X) -> c_7(cons#(X,n__from(s(X)))) 12: from#(X) -> c_8() 13: plus#(0(),Y) -> c_10() 14: times#(0(),Y) -> c_13() * Step 7: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(s(X),Y) -> c_11(plus#(X,Y)) square#(X) -> c_12(times#(X,X)) times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak DPs: 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_2() activate#(X) -> c_3() activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)) activate#(n__from(X)) -> c_5(from#(X)) cons#(X1,X2) -> c_6() from#(X) -> c_7(cons#(X,n__from(s(X)))) from#(X) -> c_8() pi#(X) -> c_9(2ndspos#(X,from(0())),from#(0())) plus#(0(),Y) -> c_10() times#(0(),Y) -> c_13() - Weak TRS: cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:plus#(s(X),Y) -> c_11(plus#(X,Y)) -->_1 plus#(0(),Y) -> c_10():13 -->_1 plus#(s(X),Y) -> c_11(plus#(X,Y)):1 2:S:square#(X) -> c_12(times#(X,X)) -->_1 times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)):3 -->_1 times#(0(),Y) -> c_13():14 3:S:times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) -->_2 times#(0(),Y) -> c_13():14 -->_1 plus#(0(),Y) -> c_10():13 -->_2 times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)):3 -->_1 plus#(s(X),Y) -> c_11(plus#(X,Y)):1 4:W:2ndsneg#(0(),Z) -> c_1() 5:W:2ndspos#(0(),Z) -> c_2() 6:W:activate#(X) -> c_3() 7:W:activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)) -->_1 cons#(X1,X2) -> c_6():9 8:W:activate#(n__from(X)) -> c_5(from#(X)) -->_1 from#(X) -> c_7(cons#(X,n__from(s(X)))):10 -->_1 from#(X) -> c_8():11 9:W:cons#(X1,X2) -> c_6() 10:W:from#(X) -> c_7(cons#(X,n__from(s(X)))) -->_1 cons#(X1,X2) -> c_6():9 11:W:from#(X) -> c_8() 12:W:pi#(X) -> c_9(2ndspos#(X,from(0())),from#(0())) -->_2 from#(X) -> c_8():11 -->_2 from#(X) -> c_7(cons#(X,n__from(s(X)))):10 -->_1 2ndspos#(0(),Z) -> c_2():5 13:W:plus#(0(),Y) -> c_10() 14:W:times#(0(),Y) -> c_13() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 12: pi#(X) -> c_9(2ndspos#(X,from(0())),from#(0())) 8: activate#(n__from(X)) -> c_5(from#(X)) 11: from#(X) -> c_8() 10: from#(X) -> c_7(cons#(X,n__from(s(X)))) 7: activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)) 9: cons#(X1,X2) -> c_6() 6: activate#(X) -> c_3() 5: 2ndspos#(0(),Z) -> c_2() 4: 2ndsneg#(0(),Z) -> c_1() 14: times#(0(),Y) -> c_13() 13: plus#(0(),Y) -> c_10() * Step 8: RemoveHeads WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(s(X),Y) -> c_11(plus#(X,Y)) square#(X) -> c_12(times#(X,X)) times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak TRS: cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:plus#(s(X),Y) -> c_11(plus#(X,Y)) -->_1 plus#(s(X),Y) -> c_11(plus#(X,Y)):1 2:S:square#(X) -> c_12(times#(X,X)) -->_1 times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)):3 3:S:times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) -->_2 times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)):3 -->_1 plus#(s(X),Y) -> c_11(plus#(X,Y)):1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,square#(X) -> c_12(times#(X,X)))] * Step 9: Decompose WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(s(X),Y) -> c_11(plus#(X,Y)) times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak TRS: cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: plus#(s(X),Y) -> c_11(plus#(X,Y)) - Weak DPs: times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak TRS: cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2 ,activate#/1,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1 ,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1 ,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus# ,square#,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} Problem (S) - Strict DPs: times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak DPs: plus#(s(X),Y) -> c_11(plus#(X,Y)) - Weak TRS: cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2 ,activate#/1,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1 ,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1 ,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus# ,square#,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} ** Step 9.a:1: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(s(X),Y) -> c_11(plus#(X,Y)) - Weak DPs: times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak TRS: cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) plus#(s(X),Y) -> c_11(plus#(X,Y)) times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) ** Step 9.a:2: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(s(X),Y) -> c_11(plus#(X,Y)) - Weak DPs: times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak TRS: plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: plus#(s(X),Y) -> c_11(plus#(X,Y)) The strictly oriented rules are moved into the weak component. *** Step 9.a:2.a:1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(s(X),Y) -> c_11(plus#(X,Y)) - Weak DPs: times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak TRS: plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_11) = {1}, uargs(c_14) = {1,2} Following symbols are considered usable: {plus,times,2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square#,times#} TcT has computed the following interpretation: p(0) = 0 p(2ndsneg) = 0 p(2ndspos) = 0 p(activate) = 0 p(cons) = 0 p(from) = 0 p(n__cons) = x1 + x2 p(n__from) = x1 p(negrecip) = x1 p(pi) = x1^2 p(plus) = 6 + 2*x1 + x2 p(posrecip) = x1 p(rcons) = x2 p(rnil) = 0 p(s) = 2 + x1 p(square) = 0 p(times) = 2*x1 + 2*x1*x2 + 2*x1^2 p(2ndsneg#) = 0 p(2ndspos#) = x1 p(activate#) = x1 + 4*x1^2 p(cons#) = 1 + x2 + x2^2 p(from#) = 1 p(pi#) = 4*x1 + 2*x1^2 p(plus#) = 4*x1 p(square#) = 2 + x1 p(times#) = 2 + 2*x1*x2 + 5*x2 + x2^2 p(c_1) = 0 p(c_2) = 0 p(c_3) = 4 p(c_4) = 2 + x1 p(c_5) = 0 p(c_6) = 2 p(c_7) = 1 p(c_8) = 0 p(c_9) = 4 p(c_10) = 0 p(c_11) = 6 + x1 p(c_12) = 2 + x1 p(c_13) = 0 p(c_14) = x1 + x2 Following rules are strictly oriented: plus#(s(X),Y) = 8 + 4*X > 6 + 4*X = c_11(plus#(X,Y)) Following rules are (at-least) weakly oriented: times#(s(X),Y) = 2 + 2*X*Y + 9*Y + Y^2 >= 2 + 2*X*Y + 9*Y + Y^2 = c_14(plus#(Y,times(X,Y)),times#(X,Y)) plus(0(),Y) = 6 + Y >= Y = Y plus(s(X),Y) = 10 + 2*X + Y >= 8 + 2*X + Y = s(plus(X,Y)) times(0(),Y) = 0 >= 0 = 0() times(s(X),Y) = 12 + 10*X + 2*X*Y + 2*X^2 + 4*Y >= 6 + 2*X + 2*X*Y + 2*X^2 + 2*Y = plus(Y,times(X,Y)) *** Step 9.a:2.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: plus#(s(X),Y) -> c_11(plus#(X,Y)) times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak TRS: plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 9.a:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: plus#(s(X),Y) -> c_11(plus#(X,Y)) times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak TRS: plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:plus#(s(X),Y) -> c_11(plus#(X,Y)) -->_1 plus#(s(X),Y) -> c_11(plus#(X,Y)):1 2:W:times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) -->_2 times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)):2 -->_1 plus#(s(X),Y) -> c_11(plus#(X,Y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) 1: plus#(s(X),Y) -> c_11(plus#(X,Y)) *** Step 9.a:2.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 9.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak DPs: plus#(s(X),Y) -> c_11(plus#(X,Y)) - Weak TRS: cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) -->_1 plus#(s(X),Y) -> c_11(plus#(X,Y)):2 -->_2 times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)):1 2:W:plus#(s(X),Y) -> c_11(plus#(X,Y)) -->_1 plus#(s(X),Y) -> c_11(plus#(X,Y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: plus#(s(X),Y) -> c_11(plus#(X,Y)) ** Step 9.b:2: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) - Weak TRS: cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)) -->_2 times#(s(X),Y) -> c_14(plus#(Y,times(X,Y)),times#(X,Y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: times#(s(X),Y) -> c_14(times#(X,Y)) ** Step 9.b:3: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: times#(s(X),Y) -> c_14(times#(X,Y)) - Weak TRS: cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: times#(s(X),Y) -> c_14(times#(X,Y)) ** Step 9.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: times#(s(X),Y) -> c_14(times#(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: times#(s(X),Y) -> c_14(times#(X,Y)) The strictly oriented rules are moved into the weak component. *** Step 9.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: times#(s(X),Y) -> c_14(times#(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_14) = {1} Following symbols are considered usable: {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square#,times#} TcT has computed the following interpretation: p(0) = [0] p(2ndsneg) = [0] p(2ndspos) = [0] p(activate) = [2] x1 + [1] p(cons) = [1] x2 + [0] p(from) = [1] p(n__cons) = [1] x1 + [1] x2 + [0] p(n__from) = [1] x1 + [0] p(negrecip) = [1] x1 + [0] p(pi) = [0] p(plus) = [0] p(posrecip) = [1] x1 + [0] p(rcons) = [1] x1 + [1] x2 + [0] p(rnil) = [0] p(s) = [1] x1 + [4] p(square) = [0] p(times) = [0] p(2ndsneg#) = [0] p(2ndspos#) = [0] p(activate#) = [0] p(cons#) = [0] p(from#) = [0] p(pi#) = [0] p(plus#) = [0] p(square#) = [0] p(times#) = [4] x1 + [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [0] p(c_9) = [4] x2 + [1] p(c_10) = [8] p(c_11) = [2] x1 + [4] p(c_12) = [1] x1 + [2] p(c_13) = [0] p(c_14) = [1] x1 + [6] Following rules are strictly oriented: times#(s(X),Y) = [4] X + [16] > [4] X + [6] = c_14(times#(X,Y)) Following rules are (at-least) weakly oriented: *** Step 9.b:4.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: times#(s(X),Y) -> c_14(times#(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 9.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: times#(s(X),Y) -> c_14(times#(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:times#(s(X),Y) -> c_14(times#(X,Y)) -->_1 times#(s(X),Y) -> c_14(times#(X,Y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: times#(s(X),Y) -> c_14(times#(X,Y)) *** Step 9.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,cons#/2,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2 ,rnil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/1,c_12/1,c_13/0,c_14/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,cons#,from#,pi#,plus#,square# ,times#} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))