WORST_CASE(?,O(n^1))
* Step 1: InnermostRuleRemoval WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2nd(cons(X,XS)) -> head(activate(XS))
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            head(cons(X,XS)) -> X
            s(X) -> n__s(X)
            sel(0(),cons(X,XS)) -> X
            sel(s(N),cons(X,XS)) -> sel(N,activate(XS))
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
            take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,head,s,sel,take} and constructors {0
            ,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          sel(s(N),cons(X,XS)) -> sel(N,activate(XS))
          take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        All above mentioned rules can be savely removed.
* Step 2: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2nd(cons(X,XS)) -> head(activate(XS))
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            head(cons(X,XS)) -> X
            s(X) -> n__s(X)
            sel(0(),cons(X,XS)) -> X
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,head,s,sel,take} and constructors {0
            ,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          0 :: [] -(0)-> A(0)
          2nd :: [A(31)] -(23)-> A(0)
          activate :: [A(29)] -(1)-> A(0)
          cons :: [A(0) x A(31)] -(31)-> A(31)
          cons :: [A(0) x A(0)] -(0)-> A(0)
          from :: [A(0)] -(0)-> A(0)
          head :: [A(0)] -(16)-> A(0)
          n__from :: [A(29)] -(29)-> A(29)
          n__from :: [A(0)] -(0)-> A(0)
          n__s :: [A(29)] -(29)-> A(29)
          n__s :: [A(0)] -(0)-> A(0)
          n__take :: [A(29) x A(29)] -(29)-> A(29)
          n__take :: [A(0) x A(0)] -(0)-> A(0)
          nil :: [] -(0)-> A(14)
          s :: [A(0)] -(2)-> A(0)
          sel :: [A(0) x A(0)] -(23)-> A(0)
          take :: [A(0) x A(0)] -(16)-> A(0)
        
        
        Cost-free Signatures used:
        --------------------------
          0 :: [] -(0)-> A_cf(0)
          activate :: [A_cf(0)] -(0)-> A_cf(0)
          cons :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          from :: [A_cf(0)] -(0)-> A_cf(0)
          n__from :: [A_cf(0)] -(0)-> A_cf(0)
          n__s :: [A_cf(0)] -(0)-> A_cf(0)
          n__take :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          nil :: [] -(0)-> A_cf(0)
          s :: [A_cf(0)] -(0)-> A_cf(0)
          take :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          0_A :: [] -(0)-> A(1)
          cons_A :: [A(0) x A(1)] -(1)-> A(1)
          n__from_A :: [A(0)] -(1)-> A(1)
          n__s_A :: [A(0)] -(1)-> A(1)
          n__take_A :: [A(0) x A(0)] -(1)-> A(1)
          nil_A :: [] -(0)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          activate(X) -> X
          activate(n__from(X)) -> from(activate(X))
          activate(n__s(X)) -> s(activate(X))
          activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
          head(cons(X,XS)) -> X
          s(X) -> n__s(X)
          take(0(),XS) -> nil()
        2. Weak:
          2nd(cons(X,XS)) -> head(activate(XS))
          from(X) -> cons(X,n__from(n__s(X)))
          from(X) -> n__from(X)
          sel(0(),cons(X,XS)) -> X
          take(X1,X2) -> n__take(X1,X2)
* Step 3: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2nd(cons(X,XS)) -> head(activate(XS))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            sel(0(),cons(X,XS)) -> X
            take(X1,X2) -> n__take(X1,X2)
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            head(cons(X,XS)) -> X
            s(X) -> n__s(X)
            take(0(),XS) -> nil()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,head,s,sel,take} and constructors {0
            ,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          0 :: [] -(0)-> A(0)
          2nd :: [A(15)] -(3)-> A(0)
          activate :: [A(13)] -(1)-> A(0)
          cons :: [A(0) x A(15)] -(15)-> A(15)
          cons :: [A(0) x A(1)] -(1)-> A(1)
          cons :: [A(0) x A(0)] -(0)-> A(0)
          from :: [A(0)] -(8)-> A(0)
          head :: [A(0)] -(1)-> A(0)
          n__from :: [A(13)] -(13)-> A(13)
          n__from :: [A(0)] -(0)-> A(0)
          n__s :: [A(13)] -(0)-> A(13)
          n__s :: [A(0)] -(0)-> A(0)
          n__take :: [A(13) x A(13)] -(13)-> A(13)
          n__take :: [A(0) x A(0)] -(0)-> A(0)
          nil :: [] -(0)-> A(6)
          s :: [A(0)] -(0)-> A(0)
          sel :: [A(0) x A(1)] -(11)-> A(0)
          take :: [A(0) x A(0)] -(0)-> A(0)
        
        
        Cost-free Signatures used:
        --------------------------
          0 :: [] -(0)-> A_cf(0)
          activate :: [A_cf(0)] -(0)-> A_cf(0)
          cons :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          from :: [A_cf(0)] -(0)-> A_cf(0)
          n__from :: [A_cf(0)] -(0)-> A_cf(0)
          n__s :: [A_cf(0)] -(0)-> A_cf(0)
          n__take :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          nil :: [] -(0)-> A_cf(0)
          s :: [A_cf(0)] -(0)-> A_cf(0)
          take :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          0_A :: [] -(0)-> A(1)
          cons_A :: [A(0) x A(1)] -(1)-> A(1)
          n__from_A :: [A(0)] -(1)-> A(1)
          n__s_A :: [A(0)] -(0)-> A(1)
          n__take_A :: [A(0) x A(0)] -(1)-> A(1)
          nil_A :: [] -(0)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          2nd(cons(X,XS)) -> head(activate(XS))
          from(X) -> cons(X,n__from(n__s(X)))
          from(X) -> n__from(X)
        2. Weak:
          sel(0(),cons(X,XS)) -> X
          take(X1,X2) -> n__take(X1,X2)
* Step 4: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            sel(0(),cons(X,XS)) -> X
            take(X1,X2) -> n__take(X1,X2)
        - Weak TRS:
            2nd(cons(X,XS)) -> head(activate(XS))
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            head(cons(X,XS)) -> X
            s(X) -> n__s(X)
            take(0(),XS) -> nil()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,head,s,sel,take} and constructors {0
            ,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          0 :: [] -(0)-> A(0)
          2nd :: [A(15)] -(10)-> A(0)
          activate :: [A(11)] -(2)-> A(0)
          cons :: [A(0) x A(0)] -(0)-> A(0)
          cons :: [A(15) x A(15)] -(15)-> A(15)
          from :: [A(0)] -(9)-> A(0)
          head :: [A(0)] -(0)-> A(0)
          n__from :: [A(11)] -(11)-> A(11)
          n__from :: [A(0)] -(0)-> A(0)
          n__s :: [A(11)] -(11)-> A(11)
          n__s :: [A(0)] -(0)-> A(0)
          n__take :: [A(11) x A(11)] -(11)-> A(11)
          n__take :: [A(0) x A(0)] -(0)-> A(0)
          nil :: [] -(0)-> A(6)
          s :: [A(0)] -(1)-> A(0)
          sel :: [A(0) x A(0)] -(11)-> A(0)
          take :: [A(0) x A(0)] -(2)-> A(0)
        
        
        Cost-free Signatures used:
        --------------------------
          0 :: [] -(0)-> A_cf(0)
          activate :: [A_cf(0)] -(0)-> A_cf(0)
          cons :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          from :: [A_cf(0)] -(0)-> A_cf(0)
          n__from :: [A_cf(0)] -(0)-> A_cf(0)
          n__s :: [A_cf(0)] -(0)-> A_cf(0)
          n__take :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          nil :: [] -(0)-> A_cf(0)
          s :: [A_cf(0)] -(0)-> A_cf(0)
          take :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          0_A :: [] -(0)-> A(1)
          cons_A :: [A(1) x A(1)] -(1)-> A(1)
          n__from_A :: [A(0)] -(1)-> A(1)
          n__s_A :: [A(0)] -(1)-> A(1)
          n__take_A :: [A(0) x A(0)] -(1)-> A(1)
          nil_A :: [] -(0)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          take(X1,X2) -> n__take(X1,X2)
        2. Weak:
          sel(0(),cons(X,XS)) -> X
* Step 5: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            sel(0(),cons(X,XS)) -> X
        - Weak TRS:
            2nd(cons(X,XS)) -> head(activate(XS))
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            head(cons(X,XS)) -> X
            s(X) -> n__s(X)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,head,s,sel,take} and constructors {0
            ,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          0 :: [] -(0)-> A(0)
          2nd :: [A(15)] -(13)-> A(0)
          activate :: [A(15)] -(9)-> A(0)
          cons :: [A(0) x A(1)] -(1)-> A(1)
          cons :: [A(0) x A(15)] -(15)-> A(15)
          cons :: [A(0) x A(0)] -(0)-> A(0)
          from :: [A(0)] -(12)-> A(0)
          head :: [A(0)] -(7)-> A(0)
          n__from :: [A(15)] -(15)-> A(15)
          n__from :: [A(0)] -(0)-> A(0)
          n__s :: [A(15)] -(15)-> A(15)
          n__s :: [A(0)] -(0)-> A(0)
          n__take :: [A(15) x A(15)] -(15)-> A(15)
          n__take :: [A(0) x A(0)] -(0)-> A(0)
          nil :: [] -(0)-> A(6)
          s :: [A(0)] -(2)-> A(0)
          sel :: [A(0) x A(1)] -(11)-> A(0)
          take :: [A(0) x A(0)] -(3)-> A(0)
        
        
        Cost-free Signatures used:
        --------------------------
          0 :: [] -(0)-> A_cf(0)
          activate :: [A_cf(0)] -(0)-> A_cf(0)
          cons :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          from :: [A_cf(0)] -(0)-> A_cf(0)
          n__from :: [A_cf(0)] -(0)-> A_cf(0)
          n__s :: [A_cf(0)] -(0)-> A_cf(0)
          n__take :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          nil :: [] -(0)-> A_cf(0)
          s :: [A_cf(0)] -(0)-> A_cf(0)
          take :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          0_A :: [] -(0)-> A(1)
          cons_A :: [A(0) x A(1)] -(1)-> A(1)
          n__from_A :: [A(0)] -(1)-> A(1)
          n__s_A :: [A(0)] -(1)-> A(1)
          n__take_A :: [A(0) x A(0)] -(1)-> A(1)
          nil_A :: [] -(0)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          sel(0(),cons(X,XS)) -> X
        2. Weak:
          
* Step 6: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            2nd(cons(X,XS)) -> head(activate(XS))
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            head(cons(X,XS)) -> X
            s(X) -> n__s(X)
            sel(0(),cons(X,XS)) -> X
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,head,s,sel,take} and constructors {0
            ,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))