MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: activate(X) -> X activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) add(X1,X2) -> n__add(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib(N) -> sel(N,fib1(s(0()),s(0()))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0(),cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) - Signature: {activate/1,add/2,fib/1,fib1/2,sel/2} / {0/0,cons/2,n__add/2,n__fib1/2,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,add,fib,fib1,sel} and constructors {0,cons ,n__add,n__fib1,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) add#(X1,X2) -> c_4() add#(0(),X) -> c_5() add#(s(X),Y) -> c_6(add#(X,Y)) fib#(N) -> c_7(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_8() fib1#(X1,X2) -> c_9() sel#(0(),cons(X,XS)) -> c_10() sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) add#(X1,X2) -> c_4() add#(0(),X) -> c_5() add#(s(X),Y) -> c_6(add#(X,Y)) fib#(N) -> c_7(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_8() fib1#(X1,X2) -> c_9() sel#(0(),cons(X,XS)) -> c_10() sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)) - Weak TRS: activate(X) -> X activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) add(X1,X2) -> n__add(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib(N) -> sel(N,fib1(s(0()),s(0()))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0(),cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) - Signature: {activate/1,add/2,fib/1,fib1/2,sel/2,activate#/1,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,n__add/2 ,n__fib1/2,s/1,c_1/0,c_2/3,c_3/3,c_4/0,c_5/0,c_6/1,c_7/2,c_8/0,c_9/0,c_10/0,c_11/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,add#,fib#,fib1#,sel#} and constructors {0,cons ,n__add,n__fib1,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) add(X1,X2) -> n__add(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) activate#(X) -> c_1() activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) add#(X1,X2) -> c_4() add#(0(),X) -> c_5() add#(s(X),Y) -> c_6(add#(X,Y)) fib#(N) -> c_7(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_8() fib1#(X1,X2) -> c_9() sel#(0(),cons(X,XS)) -> c_10() sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) add#(X1,X2) -> c_4() add#(0(),X) -> c_5() add#(s(X),Y) -> c_6(add#(X,Y)) fib#(N) -> c_7(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_8() fib1#(X1,X2) -> c_9() sel#(0(),cons(X,XS)) -> c_10() sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)) - Weak TRS: activate(X) -> X activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) add(X1,X2) -> n__add(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) - Signature: {activate/1,add/2,fib/1,fib1/2,sel/2,activate#/1,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,n__add/2 ,n__fib1/2,s/1,c_1/0,c_2/3,c_3/3,c_4/0,c_5/0,c_6/1,c_7/2,c_8/0,c_9/0,c_10/0,c_11/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,add#,fib#,fib1#,sel#} and constructors {0,cons ,n__add,n__fib1,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,4,5,8,9,10} by application of Pre({1,4,5,8,9,10}) = {2,3,6,7,11}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) 3: activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) 4: add#(X1,X2) -> c_4() 5: add#(0(),X) -> c_5() 6: add#(s(X),Y) -> c_6(add#(X,Y)) 7: fib#(N) -> c_7(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) 8: fib1#(X,Y) -> c_8() 9: fib1#(X1,X2) -> c_9() 10: sel#(0(),cons(X,XS)) -> c_10() 11: sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) add#(s(X),Y) -> c_6(add#(X,Y)) fib#(N) -> c_7(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)) - Weak DPs: activate#(X) -> c_1() add#(X1,X2) -> c_4() add#(0(),X) -> c_5() fib1#(X,Y) -> c_8() fib1#(X1,X2) -> c_9() sel#(0(),cons(X,XS)) -> c_10() - Weak TRS: activate(X) -> X activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) add(X1,X2) -> n__add(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) - Signature: {activate/1,add/2,fib/1,fib1/2,sel/2,activate#/1,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,n__add/2 ,n__fib1/2,s/1,c_1/0,c_2/3,c_3/3,c_4/0,c_5/0,c_6/1,c_7/2,c_8/0,c_9/0,c_10/0,c_11/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,add#,fib#,fib1#,sel#} and constructors {0,cons ,n__add,n__fib1,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) -->_1 add#(s(X),Y) -> c_6(add#(X,Y)):3 -->_3 activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):2 -->_2 activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):2 -->_1 add#(0(),X) -> c_5():8 -->_1 add#(X1,X2) -> c_4():7 -->_3 activate#(X) -> c_1():6 -->_2 activate#(X) -> c_1():6 -->_3 activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 -->_2 activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 2:S:activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) -->_1 fib1#(X1,X2) -> c_9():10 -->_1 fib1#(X,Y) -> c_8():9 -->_3 activate#(X) -> c_1():6 -->_2 activate#(X) -> c_1():6 -->_3 activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):2 -->_2 activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):2 -->_3 activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 -->_2 activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 3:S:add#(s(X),Y) -> c_6(add#(X,Y)) -->_1 add#(0(),X) -> c_5():8 -->_1 add#(X1,X2) -> c_4():7 -->_1 add#(s(X),Y) -> c_6(add#(X,Y)):3 4:S:fib#(N) -> c_7(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) -->_1 sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)):5 -->_1 sel#(0(),cons(X,XS)) -> c_10():11 -->_2 fib1#(X1,X2) -> c_9():10 -->_2 fib1#(X,Y) -> c_8():9 5:S:sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)) -->_1 sel#(0(),cons(X,XS)) -> c_10():11 -->_2 activate#(X) -> c_1():6 -->_1 sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)):5 -->_2 activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):2 -->_2 activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 6:W:activate#(X) -> c_1() 7:W:add#(X1,X2) -> c_4() 8:W:add#(0(),X) -> c_5() 9:W:fib1#(X,Y) -> c_8() 10:W:fib1#(X1,X2) -> c_9() 11:W:sel#(0(),cons(X,XS)) -> c_10() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 11: sel#(0(),cons(X,XS)) -> c_10() 6: activate#(X) -> c_1() 9: fib1#(X,Y) -> c_8() 10: fib1#(X1,X2) -> c_9() 7: add#(X1,X2) -> c_4() 8: add#(0(),X) -> c_5() * Step 5: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) add#(s(X),Y) -> c_6(add#(X,Y)) fib#(N) -> c_7(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)) - Weak TRS: activate(X) -> X activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) add(X1,X2) -> n__add(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) - Signature: {activate/1,add/2,fib/1,fib1/2,sel/2,activate#/1,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,n__add/2 ,n__fib1/2,s/1,c_1/0,c_2/3,c_3/3,c_4/0,c_5/0,c_6/1,c_7/2,c_8/0,c_9/0,c_10/0,c_11/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,add#,fib#,fib1#,sel#} and constructors {0,cons ,n__add,n__fib1,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) -->_1 add#(s(X),Y) -> c_6(add#(X,Y)):3 -->_3 activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):2 -->_2 activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):2 -->_3 activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 -->_2 activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 2:S:activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) -->_3 activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):2 -->_2 activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):2 -->_3 activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 -->_2 activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 3:S:add#(s(X),Y) -> c_6(add#(X,Y)) -->_1 add#(s(X),Y) -> c_6(add#(X,Y)):3 4:S:fib#(N) -> c_7(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) -->_1 sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)):5 5:S:sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)) -->_1 sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)):5 -->_2 activate#(n__fib1(X1,X2)) -> c_3(fib1#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):2 -->_2 activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: activate#(n__fib1(X1,X2)) -> c_3(activate#(X1),activate#(X2)) fib#(N) -> c_7(sel#(N,fib1(s(0()),s(0())))) * Step 6: NaturalMI MAYBE + Considered Problem: - Strict DPs: activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__fib1(X1,X2)) -> c_3(activate#(X1),activate#(X2)) add#(s(X),Y) -> c_6(add#(X,Y)) fib#(N) -> c_7(sel#(N,fib1(s(0()),s(0())))) sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)) - Weak TRS: activate(X) -> X activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) add(X1,X2) -> n__add(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) - Signature: {activate/1,add/2,fib/1,fib1/2,sel/2,activate#/1,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,n__add/2 ,n__fib1/2,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/0,c_10/0,c_11/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,add#,fib#,fib1#,sel#} and constructors {0,cons ,n__add,n__fib1,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_2) = {1,2,3}, uargs(c_3) = {1,2}, uargs(c_6) = {1}, uargs(c_7) = {1}, uargs(c_11) = {1,2} Following symbols are considered usable: {activate#,add#,fib#,fib1#,sel#} TcT has computed the following interpretation: p(0) = [0] p(activate) = [4] x1 + [6] p(add) = [0] p(cons) = [0] p(fib) = [0] p(fib1) = [5] x1 + [0] p(n__add) = [3] p(n__fib1) = [0] p(s) = [5] p(sel) = [0] p(activate#) = [0] p(add#) = [0] p(fib#) = [11] p(fib1#) = [0] p(sel#) = [2] p(c_1) = [0] p(c_2) = [1] x1 + [4] x2 + [2] x3 + [0] p(c_3) = [4] x1 + [1] x2 + [0] p(c_4) = [1] p(c_5) = [0] p(c_6) = [8] x1 + [0] p(c_7) = [1] x1 + [5] p(c_8) = [0] p(c_9) = [0] p(c_10) = [0] p(c_11) = [1] x1 + [1] x2 + [0] Following rules are strictly oriented: fib#(N) = [11] > [7] = c_7(sel#(N,fib1(s(0()),s(0())))) Following rules are (at-least) weakly oriented: activate#(n__add(X1,X2)) = [0] >= [0] = c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__fib1(X1,X2)) = [0] >= [0] = c_3(activate#(X1),activate#(X2)) add#(s(X),Y) = [0] >= [0] = c_6(add#(X,Y)) sel#(s(N),cons(X,XS)) = [2] >= [2] = c_11(sel#(N,activate(XS)),activate#(XS)) * Step 7: Failure MAYBE + Considered Problem: - Strict DPs: activate#(n__add(X1,X2)) -> c_2(add#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__fib1(X1,X2)) -> c_3(activate#(X1),activate#(X2)) add#(s(X),Y) -> c_6(add#(X,Y)) sel#(s(N),cons(X,XS)) -> c_11(sel#(N,activate(XS)),activate#(XS)) - Weak DPs: fib#(N) -> c_7(sel#(N,fib1(s(0()),s(0())))) - Weak TRS: activate(X) -> X activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) add(X1,X2) -> n__add(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) - Signature: {activate/1,add/2,fib/1,fib1/2,sel/2,activate#/1,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,n__add/2 ,n__fib1/2,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/0,c_10/0,c_11/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,add#,fib#,fib1#,sel#} and constructors {0,cons ,n__add,n__fib1,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE