MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: activate(X) -> X activate(n__zeros()) -> zeros() and(tt(),X) -> activate(X) length(cons(N,L)) -> s(length(activate(L))) length(nil()) -> 0() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,zeros/0} / {0/0,cons/2,n__zeros/0,nil/0,s/1,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,and,length,zeros} and constructors {0,cons ,n__zeros,nil,s,tt} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__zeros()) -> c_2(zeros#()) and#(tt(),X) -> c_3(activate#(X)) length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)) length#(nil()) -> c_5() zeros#() -> c_6() zeros#() -> c_7() Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__zeros()) -> c_2(zeros#()) and#(tt(),X) -> c_3(activate#(X)) length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)) length#(nil()) -> c_5() zeros#() -> c_6() zeros#() -> c_7() - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() and(tt(),X) -> activate(X) length(cons(N,L)) -> s(length(activate(L))) length(nil()) -> 0() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,zeros/0,activate#/1,and#/2,length#/1,zeros#/0} / {0/0,cons/2,n__zeros/0,nil/0,s/1 ,tt/0,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,zeros#} and constructors {0,cons ,n__zeros,nil,s,tt} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__zeros()) -> zeros() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() activate#(X) -> c_1() activate#(n__zeros()) -> c_2(zeros#()) and#(tt(),X) -> c_3(activate#(X)) length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)) length#(nil()) -> c_5() zeros#() -> c_6() zeros#() -> c_7() * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__zeros()) -> c_2(zeros#()) and#(tt(),X) -> c_3(activate#(X)) length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)) length#(nil()) -> c_5() zeros#() -> c_6() zeros#() -> c_7() - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,zeros/0,activate#/1,and#/2,length#/1,zeros#/0} / {0/0,cons/2,n__zeros/0,nil/0,s/1 ,tt/0,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,zeros#} and constructors {0,cons ,n__zeros,nil,s,tt} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,5,6,7} by application of Pre({1,5,6,7}) = {2,3,4}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: activate#(n__zeros()) -> c_2(zeros#()) 3: and#(tt(),X) -> c_3(activate#(X)) 4: length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)) 5: length#(nil()) -> c_5() 6: zeros#() -> c_6() 7: zeros#() -> c_7() * Step 4: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: activate#(n__zeros()) -> c_2(zeros#()) and#(tt(),X) -> c_3(activate#(X)) length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)) - Weak DPs: activate#(X) -> c_1() length#(nil()) -> c_5() zeros#() -> c_6() zeros#() -> c_7() - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,zeros/0,activate#/1,and#/2,length#/1,zeros#/0} / {0/0,cons/2,n__zeros/0,nil/0,s/1 ,tt/0,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,zeros#} and constructors {0,cons ,n__zeros,nil,s,tt} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2,3}. Here rules are labelled as follows: 1: activate#(n__zeros()) -> c_2(zeros#()) 2: and#(tt(),X) -> c_3(activate#(X)) 3: length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)) 4: activate#(X) -> c_1() 5: length#(nil()) -> c_5() 6: zeros#() -> c_6() 7: zeros#() -> c_7() * Step 5: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: and#(tt(),X) -> c_3(activate#(X)) length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)) - Weak DPs: activate#(X) -> c_1() activate#(n__zeros()) -> c_2(zeros#()) length#(nil()) -> c_5() zeros#() -> c_6() zeros#() -> c_7() - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,zeros/0,activate#/1,and#/2,length#/1,zeros#/0} / {0/0,cons/2,n__zeros/0,nil/0,s/1 ,tt/0,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,zeros#} and constructors {0,cons ,n__zeros,nil,s,tt} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {}. Here rules are labelled as follows: 1: and#(tt(),X) -> c_3(activate#(X)) 2: length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)) 3: activate#(X) -> c_1() 4: activate#(n__zeros()) -> c_2(zeros#()) 5: length#(nil()) -> c_5() 6: zeros#() -> c_6() 7: zeros#() -> c_7() * Step 6: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)) - Weak DPs: activate#(X) -> c_1() activate#(n__zeros()) -> c_2(zeros#()) and#(tt(),X) -> c_3(activate#(X)) length#(nil()) -> c_5() zeros#() -> c_6() zeros#() -> c_7() - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,zeros/0,activate#/1,and#/2,length#/1,zeros#/0} / {0/0,cons/2,n__zeros/0,nil/0,s/1 ,tt/0,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,zeros#} and constructors {0,cons ,n__zeros,nil,s,tt} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)) -->_2 activate#(n__zeros()) -> c_2(zeros#()):3 -->_1 length#(nil()) -> c_5():5 -->_2 activate#(X) -> c_1():2 -->_1 length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)):1 2:W:activate#(X) -> c_1() 3:W:activate#(n__zeros()) -> c_2(zeros#()) -->_1 zeros#() -> c_7():7 -->_1 zeros#() -> c_6():6 4:W:and#(tt(),X) -> c_3(activate#(X)) -->_1 activate#(n__zeros()) -> c_2(zeros#()):3 -->_1 activate#(X) -> c_1():2 5:W:length#(nil()) -> c_5() 6:W:zeros#() -> c_6() 7:W:zeros#() -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: and#(tt(),X) -> c_3(activate#(X)) 2: activate#(X) -> c_1() 5: length#(nil()) -> c_5() 3: activate#(n__zeros()) -> c_2(zeros#()) 6: zeros#() -> c_6() 7: zeros#() -> c_7() * Step 7: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)) - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,zeros/0,activate#/1,and#/2,length#/1,zeros#/0} / {0/0,cons/2,n__zeros/0,nil/0,s/1 ,tt/0,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,zeros#} and constructors {0,cons ,n__zeros,nil,s,tt} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)) -->_1 length#(cons(N,L)) -> c_4(length#(activate(L)),activate#(L)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: length#(cons(N,L)) -> c_4(length#(activate(L))) * Step 8: Failure MAYBE + Considered Problem: - Strict DPs: length#(cons(N,L)) -> c_4(length#(activate(L))) - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,zeros/0,activate#/1,and#/2,length#/1,zeros#/0} / {0/0,cons/2,n__zeros/0,nil/0,s/1 ,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,zeros#} and constructors {0,cons ,n__zeros,nil,s,tt} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE