WORST_CASE(?,O(n^2))
* Step 1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            and(tt(),X) -> activate(X)
            plus(N,0()) -> N
            plus(N,s(M)) -> s(plus(N,M))
            x(N,0()) -> 0()
            x(N,s(M)) -> plus(x(N,M),N)
        - Signature:
            {activate/1,and/2,plus/2,x/2} / {0/0,s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,and,plus,x} and constructors {0,s,tt}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          activate#(X) -> c_1()
          and#(tt(),X) -> c_2(activate#(X))
          plus#(N,0()) -> c_3()
          plus#(N,s(M)) -> c_4(plus#(N,M))
          x#(N,0()) -> c_5()
          x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_1()
            and#(tt(),X) -> c_2(activate#(X))
            plus#(N,0()) -> c_3()
            plus#(N,s(M)) -> c_4(plus#(N,M))
            x#(N,0()) -> c_5()
            x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
        - Weak TRS:
            activate(X) -> X
            and(tt(),X) -> activate(X)
            plus(N,0()) -> N
            plus(N,s(M)) -> s(plus(N,M))
            x(N,0()) -> 0()
            x(N,s(M)) -> plus(x(N,M),N)
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          plus(N,0()) -> N
          plus(N,s(M)) -> s(plus(N,M))
          x(N,0()) -> 0()
          x(N,s(M)) -> plus(x(N,M),N)
          activate#(X) -> c_1()
          and#(tt(),X) -> c_2(activate#(X))
          plus#(N,0()) -> c_3()
          plus#(N,s(M)) -> c_4(plus#(N,M))
          x#(N,0()) -> c_5()
          x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
* Step 3: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_1()
            and#(tt(),X) -> c_2(activate#(X))
            plus#(N,0()) -> c_3()
            plus#(N,s(M)) -> c_4(plus#(N,M))
            x#(N,0()) -> c_5()
            x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
        - Weak TRS:
            plus(N,0()) -> N
            plus(N,s(M)) -> s(plus(N,M))
            x(N,0()) -> 0()
            x(N,s(M)) -> plus(x(N,M),N)
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,3,5}
        by application of
          Pre({1,3,5}) = {2,4,6}.
        Here rules are labelled as follows:
          1: activate#(X) -> c_1()
          2: and#(tt(),X) -> c_2(activate#(X))
          3: plus#(N,0()) -> c_3()
          4: plus#(N,s(M)) -> c_4(plus#(N,M))
          5: x#(N,0()) -> c_5()
          6: x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
* Step 4: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            and#(tt(),X) -> c_2(activate#(X))
            plus#(N,s(M)) -> c_4(plus#(N,M))
            x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
        - Weak DPs:
            activate#(X) -> c_1()
            plus#(N,0()) -> c_3()
            x#(N,0()) -> c_5()
        - Weak TRS:
            plus(N,0()) -> N
            plus(N,s(M)) -> s(plus(N,M))
            x(N,0()) -> 0()
            x(N,s(M)) -> plus(x(N,M),N)
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {}.
        Here rules are labelled as follows:
          1: and#(tt(),X) -> c_2(activate#(X))
          2: plus#(N,s(M)) -> c_4(plus#(N,M))
          3: x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
          4: activate#(X) -> c_1()
          5: plus#(N,0()) -> c_3()
          6: x#(N,0()) -> c_5()
* Step 5: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            plus#(N,s(M)) -> c_4(plus#(N,M))
            x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
        - Weak DPs:
            activate#(X) -> c_1()
            and#(tt(),X) -> c_2(activate#(X))
            plus#(N,0()) -> c_3()
            x#(N,0()) -> c_5()
        - Weak TRS:
            plus(N,0()) -> N
            plus(N,s(M)) -> s(plus(N,M))
            x(N,0()) -> 0()
            x(N,s(M)) -> plus(x(N,M),N)
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:plus#(N,s(M)) -> c_4(plus#(N,M))
             -->_1 plus#(N,0()) -> c_3():5
             -->_1 plus#(N,s(M)) -> c_4(plus#(N,M)):1
          
          2:S:x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
             -->_2 x#(N,0()) -> c_5():6
             -->_1 plus#(N,0()) -> c_3():5
             -->_2 x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)):2
             -->_1 plus#(N,s(M)) -> c_4(plus#(N,M)):1
          
          3:W:activate#(X) -> c_1()
             
          
          4:W:and#(tt(),X) -> c_2(activate#(X))
             -->_1 activate#(X) -> c_1():3
          
          5:W:plus#(N,0()) -> c_3()
             
          
          6:W:x#(N,0()) -> c_5()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: and#(tt(),X) -> c_2(activate#(X))
          3: activate#(X) -> c_1()
          6: x#(N,0()) -> c_5()
          5: plus#(N,0()) -> c_3()
* Step 6: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            plus#(N,s(M)) -> c_4(plus#(N,M))
            x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
        - Weak TRS:
            plus(N,0()) -> N
            plus(N,s(M)) -> s(plus(N,M))
            x(N,0()) -> 0()
            x(N,s(M)) -> plus(x(N,M),N)
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              plus#(N,s(M)) -> c_4(plus#(N,M))
          - Weak DPs:
              x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
          - Weak TRS:
              plus(N,0()) -> N
              plus(N,s(M)) -> s(plus(N,M))
              x(N,0()) -> 0()
              x(N,s(M)) -> plus(x(N,M),N)
          - Signature:
              {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1
              ,c_5/0,c_6/2}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
        
        Problem (S)
          - Strict DPs:
              x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
          - Weak DPs:
              plus#(N,s(M)) -> c_4(plus#(N,M))
          - Weak TRS:
              plus(N,0()) -> N
              plus(N,s(M)) -> s(plus(N,M))
              x(N,0()) -> 0()
              x(N,s(M)) -> plus(x(N,M),N)
          - Signature:
              {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1
              ,c_5/0,c_6/2}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
** Step 6.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            plus#(N,s(M)) -> c_4(plus#(N,M))
        - Weak DPs:
            x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
        - Weak TRS:
            plus(N,0()) -> N
            plus(N,s(M)) -> s(plus(N,M))
            x(N,0()) -> 0()
            x(N,s(M)) -> plus(x(N,M),N)
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: plus#(N,s(M)) -> c_4(plus#(N,M))
          
        The strictly oriented rules are moved into the weak component.
*** Step 6.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            plus#(N,s(M)) -> c_4(plus#(N,M))
        - Weak DPs:
            x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
        - Weak TRS:
            plus(N,0()) -> N
            plus(N,s(M)) -> s(plus(N,M))
            x(N,0()) -> 0()
            x(N,s(M)) -> plus(x(N,M),N)
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_4) = {1},
          uargs(c_6) = {1,2}
        
        Following symbols are considered usable:
          {activate#,and#,plus#,x#}
        TcT has computed the following interpretation:
                  p(0) = 3                    
           p(activate) = 1 + 2*x1 + x1^2      
                p(and) = x2                   
               p(plus) = 1 + x1^2 + 2*x2      
                  p(s) = 2 + x1               
                 p(tt) = 0                    
                  p(x) = x1^2                 
          p(activate#) = 1 + 4*x1 + 4*x1^2    
               p(and#) = 4*x1^2               
              p(plus#) = 4*x2                 
                 p(x#) = 2*x1 + 4*x1*x2 + x1^2
                p(c_1) = 0                    
                p(c_2) = 1                    
                p(c_3) = 0                    
                p(c_4) = 4 + x1               
                p(c_5) = 1                    
                p(c_6) = x1 + x2              
        
        Following rules are strictly oriented:
        plus#(N,s(M)) = 8 + 4*M        
                      > 4 + 4*M        
                      = c_4(plus#(N,M))
        
        
        Following rules are (at-least) weakly oriented:
        x#(N,s(M)) =  4*M*N + 10*N + N^2          
                   >= 4*M*N + 6*N + N^2           
                   =  c_6(plus#(x(N,M),N),x#(N,M))
        
*** Step 6.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            plus#(N,s(M)) -> c_4(plus#(N,M))
            x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
        - Weak TRS:
            plus(N,0()) -> N
            plus(N,s(M)) -> s(plus(N,M))
            x(N,0()) -> 0()
            x(N,s(M)) -> plus(x(N,M),N)
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 6.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            plus#(N,s(M)) -> c_4(plus#(N,M))
            x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
        - Weak TRS:
            plus(N,0()) -> N
            plus(N,s(M)) -> s(plus(N,M))
            x(N,0()) -> 0()
            x(N,s(M)) -> plus(x(N,M),N)
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:plus#(N,s(M)) -> c_4(plus#(N,M))
             -->_1 plus#(N,s(M)) -> c_4(plus#(N,M)):1
          
          2:W:x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
             -->_2 x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)):2
             -->_1 plus#(N,s(M)) -> c_4(plus#(N,M)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
          1: plus#(N,s(M)) -> c_4(plus#(N,M))
*** Step 6.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            plus(N,0()) -> N
            plus(N,s(M)) -> s(plus(N,M))
            x(N,0()) -> 0()
            x(N,s(M)) -> plus(x(N,M),N)
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

** Step 6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
        - Weak DPs:
            plus#(N,s(M)) -> c_4(plus#(N,M))
        - Weak TRS:
            plus(N,0()) -> N
            plus(N,s(M)) -> s(plus(N,M))
            x(N,0()) -> 0()
            x(N,s(M)) -> plus(x(N,M),N)
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
             -->_1 plus#(N,s(M)) -> c_4(plus#(N,M)):2
             -->_2 x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)):1
          
          2:W:plus#(N,s(M)) -> c_4(plus#(N,M))
             -->_1 plus#(N,s(M)) -> c_4(plus#(N,M)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: plus#(N,s(M)) -> c_4(plus#(N,M))
** Step 6.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
        - Weak TRS:
            plus(N,0()) -> N
            plus(N,s(M)) -> s(plus(N,M))
            x(N,0()) -> 0()
            x(N,s(M)) -> plus(x(N,M),N)
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M))
             -->_2 x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          x#(N,s(M)) -> c_6(x#(N,M))
** Step 6.b:3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            x#(N,s(M)) -> c_6(x#(N,M))
        - Weak TRS:
            plus(N,0()) -> N
            plus(N,s(M)) -> s(plus(N,M))
            x(N,0()) -> 0()
            x(N,s(M)) -> plus(x(N,M),N)
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          x#(N,s(M)) -> c_6(x#(N,M))
** Step 6.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            x#(N,s(M)) -> c_6(x#(N,M))
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: x#(N,s(M)) -> c_6(x#(N,M))
          
        The strictly oriented rules are moved into the weak component.
*** Step 6.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            x#(N,s(M)) -> c_6(x#(N,M))
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_6) = {1}
        
        Following symbols are considered usable:
          {activate#,and#,plus#,x#}
        TcT has computed the following interpretation:
                  p(0) = [2]                  
           p(activate) = [1] x1 + [1]         
                p(and) = [1] x1 + [0]         
               p(plus) = [1] x1 + [1]         
                  p(s) = [1] x1 + [4]         
                 p(tt) = [0]                  
                  p(x) = [4] x2 + [1]         
          p(activate#) = [2] x1 + [0]         
               p(and#) = [2] x1 + [1] x2 + [8]
              p(plus#) = [1] x1 + [8] x2 + [0]
                 p(x#) = [8] x1 + [4] x2 + [0]
                p(c_1) = [2]                  
                p(c_2) = [1] x1 + [0]         
                p(c_3) = [1]                  
                p(c_4) = [2] x1 + [4]         
                p(c_5) = [1]                  
                p(c_6) = [1] x1 + [15]        
        
        Following rules are strictly oriented:
        x#(N,s(M)) = [4] M + [8] N + [16]
                   > [4] M + [8] N + [15]
                   = c_6(x#(N,M))        
        
        
        Following rules are (at-least) weakly oriented:
        
*** Step 6.b:4.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            x#(N,s(M)) -> c_6(x#(N,M))
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 6.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            x#(N,s(M)) -> c_6(x#(N,M))
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:x#(N,s(M)) -> c_6(x#(N,M))
             -->_1 x#(N,s(M)) -> c_6(x#(N,M)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: x#(N,s(M)) -> c_6(x#(N,M))
*** Step 6.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0
            ,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^2))