MAYBE
* Step 1: InnermostRuleRemoval MAYBE
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNat(activate(V1)),activate(V2))
            U12(tt(),V2) -> U13(isNat(activate(V2)))
            U13(tt()) -> tt()
            U21(tt(),V1) -> U22(isNat(activate(V1)))
            U22(tt()) -> tt()
            U31(tt(),N) -> activate(N)
            U41(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__and(X1,X2)) -> and(X1,X2)
            activate(n__isNatKind(X)) -> isNatKind(X)
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            and(X1,X2) -> n__and(X1,X2)
            and(tt(),X) -> activate(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                        ,activate(V1)
                                        ,activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(X) -> n__isNatKind(X)
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
            isNatKind(n__s(V1)) -> isNatKind(activate(V1))
            plus(N,0()) -> U31(and(isNat(N),n__isNatKind(N)),N)
            plus(N,s(M)) -> U41(and(and(isNat(M),n__isNatKind(M)),n__and(isNat(N),n__isNatKind(N))),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/2,U13/1,U21/2,U22/1,U31/2,U41/3,activate/1,and/2,isNat/1,isNatKind/1,plus/2,s/1} / {n__0/0
            ,n__and/2,n__isNatKind/1,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U13,U21,U22,U31,U41,activate,and,isNat
            ,isNatKind,plus,s} and constructors {n__0,n__and,n__isNatKind,n__plus,n__s,tt}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          plus(N,0()) -> U31(and(isNat(N),n__isNatKind(N)),N)
          plus(N,s(M)) -> U41(and(and(isNat(M),n__isNatKind(M)),n__and(isNat(N),n__isNatKind(N))),M,N)
        All above mentioned rules can be savely removed.
* Step 2: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNat(activate(V1)),activate(V2))
            U12(tt(),V2) -> U13(isNat(activate(V2)))
            U13(tt()) -> tt()
            U21(tt(),V1) -> U22(isNat(activate(V1)))
            U22(tt()) -> tt()
            U31(tt(),N) -> activate(N)
            U41(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__and(X1,X2)) -> and(X1,X2)
            activate(n__isNatKind(X)) -> isNatKind(X)
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            and(X1,X2) -> n__and(X1,X2)
            and(tt(),X) -> activate(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                        ,activate(V1)
                                        ,activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(X) -> n__isNatKind(X)
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
            isNatKind(n__s(V1)) -> isNatKind(activate(V1))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/2,U13/1,U21/2,U22/1,U31/2,U41/3,activate/1,and/2,isNat/1,isNatKind/1,plus/2,s/1} / {n__0/0
            ,n__and/2,n__isNatKind/1,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U13,U21,U22,U31,U41,activate,and,isNat
            ,isNatKind,plus,s} and constructors {n__0,n__and,n__isNatKind,n__plus,n__s,tt}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          0#() -> c_1()
          U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                 ,isNat#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V2))
          U12#(tt(),V2) -> c_3(U13#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          U13#(tt()) -> c_4()
          U21#(tt(),V1) -> c_5(U22#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          U22#(tt()) -> c_6()
          U31#(tt(),N) -> c_7(activate#(N))
          U41#(tt(),M,N) -> c_8(s#(plus(activate(N),activate(M)))
                               ,plus#(activate(N),activate(M))
                               ,activate#(N)
                               ,activate#(M))
          activate#(X) -> c_9()
          activate#(n__0()) -> c_10(0#())
          activate#(n__and(X1,X2)) -> c_11(and#(X1,X2))
          activate#(n__isNatKind(X)) -> c_12(isNatKind#(X))
          activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2))
          activate#(n__s(X)) -> c_14(s#(X))
          and#(X1,X2) -> c_15()
          and#(tt(),X) -> c_16(activate#(X))
          isNat#(n__0()) -> c_17()
          isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                             ,activate(V1)
                                             ,activate(V2))
                                        ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                        ,isNatKind#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V2)
                                        ,activate#(V1)
                                        ,activate#(V2))
          isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
          isNatKind#(X) -> c_20()
          isNatKind#(n__0()) -> c_21()
          isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1))
          plus#(X1,X2) -> c_24()
          s#(X) -> c_25()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 3: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V2) -> c_3(U13#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U13#(tt()) -> c_4()
            U21#(tt(),V1) -> c_5(U22#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U22#(tt()) -> c_6()
            U31#(tt(),N) -> c_7(activate#(N))
            U41#(tt(),M,N) -> c_8(s#(plus(activate(N),activate(M)))
                                 ,plus#(activate(N),activate(M))
                                 ,activate#(N)
                                 ,activate#(M))
            activate#(X) -> c_9()
            activate#(n__0()) -> c_10(0#())
            activate#(n__and(X1,X2)) -> c_11(and#(X1,X2))
            activate#(n__isNatKind(X)) -> c_12(isNatKind#(X))
            activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2))
            activate#(n__s(X)) -> c_14(s#(X))
            and#(X1,X2) -> c_15()
            and#(tt(),X) -> c_16(activate#(X))
            isNat#(n__0()) -> c_17()
            isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                               ,activate(V1)
                                               ,activate(V2))
                                          ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(X) -> c_20()
            isNatKind#(n__0()) -> c_21()
            isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1))
            plus#(X1,X2) -> c_24()
            s#(X) -> c_25()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNat(activate(V1)),activate(V2))
            U12(tt(),V2) -> U13(isNat(activate(V2)))
            U13(tt()) -> tt()
            U21(tt(),V1) -> U22(isNat(activate(V1)))
            U22(tt()) -> tt()
            U31(tt(),N) -> activate(N)
            U41(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__and(X1,X2)) -> and(X1,X2)
            activate(n__isNatKind(X)) -> isNatKind(X)
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            and(X1,X2) -> n__and(X1,X2)
            and(tt(),X) -> activate(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                        ,activate(V1)
                                        ,activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(X) -> n__isNatKind(X)
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
            isNatKind(n__s(V1)) -> isNatKind(activate(V1))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/2,U13/1,U21/2,U22/1,U31/2,U41/3,activate/1,and/2,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3
            ,U12#/2,U13#/1,U21#/2,U22#/1,U31#/2,U41#/3,activate#/1,and#/2,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0
            ,n__and/2,n__isNatKind/1,n__plus/2,n__s/1,tt/0,c_1/0,c_2/4,c_3/3,c_4/0,c_5/3,c_6/0,c_7/1,c_8/4,c_9/0,c_10/1
            ,c_11/1,c_12/1,c_13/1,c_14/1,c_15/0,c_16/1,c_17/0,c_18/7,c_19/4,c_20/0,c_21/0,c_22/4,c_23/2,c_24/0,c_25/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U21#,U22#,U31#,U41#,activate#,and#
            ,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__and,n__isNatKind,n__plus,n__s,tt}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNat(activate(V1)),activate(V2))
          U12(tt(),V2) -> U13(isNat(activate(V2)))
          U13(tt()) -> tt()
          U21(tt(),V1) -> U22(isNat(activate(V1)))
          U22(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__and(X1,X2)) -> and(X1,X2)
          activate(n__isNatKind(X)) -> isNatKind(X)
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          and(X1,X2) -> n__and(X1,X2)
          and(tt(),X) -> activate(X)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                      ,activate(V1)
                                      ,activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(X) -> n__isNatKind(X)
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
          isNatKind(n__s(V1)) -> isNatKind(activate(V1))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          0#() -> c_1()
          U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                 ,isNat#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V2))
          U12#(tt(),V2) -> c_3(U13#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          U13#(tt()) -> c_4()
          U21#(tt(),V1) -> c_5(U22#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          U22#(tt()) -> c_6()
          U31#(tt(),N) -> c_7(activate#(N))
          U41#(tt(),M,N) -> c_8(s#(plus(activate(N),activate(M)))
                               ,plus#(activate(N),activate(M))
                               ,activate#(N)
                               ,activate#(M))
          activate#(X) -> c_9()
          activate#(n__0()) -> c_10(0#())
          activate#(n__and(X1,X2)) -> c_11(and#(X1,X2))
          activate#(n__isNatKind(X)) -> c_12(isNatKind#(X))
          activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2))
          activate#(n__s(X)) -> c_14(s#(X))
          and#(X1,X2) -> c_15()
          and#(tt(),X) -> c_16(activate#(X))
          isNat#(n__0()) -> c_17()
          isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                             ,activate(V1)
                                             ,activate(V2))
                                        ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                        ,isNatKind#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V2)
                                        ,activate#(V1)
                                        ,activate#(V2))
          isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
          isNatKind#(X) -> c_20()
          isNatKind#(n__0()) -> c_21()
          isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1))
          plus#(X1,X2) -> c_24()
          s#(X) -> c_25()
* Step 4: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V2) -> c_3(U13#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U13#(tt()) -> c_4()
            U21#(tt(),V1) -> c_5(U22#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U22#(tt()) -> c_6()
            U31#(tt(),N) -> c_7(activate#(N))
            U41#(tt(),M,N) -> c_8(s#(plus(activate(N),activate(M)))
                                 ,plus#(activate(N),activate(M))
                                 ,activate#(N)
                                 ,activate#(M))
            activate#(X) -> c_9()
            activate#(n__0()) -> c_10(0#())
            activate#(n__and(X1,X2)) -> c_11(and#(X1,X2))
            activate#(n__isNatKind(X)) -> c_12(isNatKind#(X))
            activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2))
            activate#(n__s(X)) -> c_14(s#(X))
            and#(X1,X2) -> c_15()
            and#(tt(),X) -> c_16(activate#(X))
            isNat#(n__0()) -> c_17()
            isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                               ,activate(V1)
                                               ,activate(V2))
                                          ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(X) -> c_20()
            isNatKind#(n__0()) -> c_21()
            isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1))
            plus#(X1,X2) -> c_24()
            s#(X) -> c_25()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNat(activate(V1)),activate(V2))
            U12(tt(),V2) -> U13(isNat(activate(V2)))
            U13(tt()) -> tt()
            U21(tt(),V1) -> U22(isNat(activate(V1)))
            U22(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__and(X1,X2)) -> and(X1,X2)
            activate(n__isNatKind(X)) -> isNatKind(X)
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            and(X1,X2) -> n__and(X1,X2)
            and(tt(),X) -> activate(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                        ,activate(V1)
                                        ,activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(X) -> n__isNatKind(X)
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
            isNatKind(n__s(V1)) -> isNatKind(activate(V1))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/2,U13/1,U21/2,U22/1,U31/2,U41/3,activate/1,and/2,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3
            ,U12#/2,U13#/1,U21#/2,U22#/1,U31#/2,U41#/3,activate#/1,and#/2,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0
            ,n__and/2,n__isNatKind/1,n__plus/2,n__s/1,tt/0,c_1/0,c_2/4,c_3/3,c_4/0,c_5/3,c_6/0,c_7/1,c_8/4,c_9/0,c_10/1
            ,c_11/1,c_12/1,c_13/1,c_14/1,c_15/0,c_16/1,c_17/0,c_18/7,c_19/4,c_20/0,c_21/0,c_22/4,c_23/2,c_24/0,c_25/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U21#,U22#,U31#,U41#,activate#,and#
            ,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__and,n__isNatKind,n__plus,n__s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,4,6,9,15,17,20,21,24,25}
        by application of
          Pre({1,4,6,9,15,17,20,21,24,25}) = {2,3,5,7,8,10,11,12,13,14,16,18,19,22,23}.
        Here rules are labelled as follows:
          1: 0#() -> c_1()
          2: U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
          3: U12#(tt(),V2) -> c_3(U13#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          4: U13#(tt()) -> c_4()
          5: U21#(tt(),V1) -> c_5(U22#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          6: U22#(tt()) -> c_6()
          7: U31#(tt(),N) -> c_7(activate#(N))
          8: U41#(tt(),M,N) -> c_8(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
          9: activate#(X) -> c_9()
          10: activate#(n__0()) -> c_10(0#())
          11: activate#(n__and(X1,X2)) -> c_11(and#(X1,X2))
          12: activate#(n__isNatKind(X)) -> c_12(isNatKind#(X))
          13: activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2))
          14: activate#(n__s(X)) -> c_14(s#(X))
          15: and#(X1,X2) -> c_15()
          16: and#(tt(),X) -> c_16(activate#(X))
          17: isNat#(n__0()) -> c_17()
          18: isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                 ,activate(V1)
                                                 ,activate(V2))
                                            ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2)
                                            ,activate#(V1)
                                            ,activate#(V2))
          19: isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1))
          20: isNatKind#(X) -> c_20()
          21: isNatKind#(n__0()) -> c_21()
          22: isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                ,isNatKind#(activate(V1))
                                                ,activate#(V1)
                                                ,activate#(V2))
          23: isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1))
          24: plus#(X1,X2) -> c_24()
          25: s#(X) -> c_25()
* Step 5: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V2) -> c_3(U13#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_5(U22#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U31#(tt(),N) -> c_7(activate#(N))
            U41#(tt(),M,N) -> c_8(s#(plus(activate(N),activate(M)))
                                 ,plus#(activate(N),activate(M))
                                 ,activate#(N)
                                 ,activate#(M))
            activate#(n__0()) -> c_10(0#())
            activate#(n__and(X1,X2)) -> c_11(and#(X1,X2))
            activate#(n__isNatKind(X)) -> c_12(isNatKind#(X))
            activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2))
            activate#(n__s(X)) -> c_14(s#(X))
            and#(tt(),X) -> c_16(activate#(X))
            isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                               ,activate(V1)
                                               ,activate(V2))
                                          ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1))
        - Weak DPs:
            0#() -> c_1()
            U13#(tt()) -> c_4()
            U22#(tt()) -> c_6()
            activate#(X) -> c_9()
            and#(X1,X2) -> c_15()
            isNat#(n__0()) -> c_17()
            isNatKind#(X) -> c_20()
            isNatKind#(n__0()) -> c_21()
            plus#(X1,X2) -> c_24()
            s#(X) -> c_25()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNat(activate(V1)),activate(V2))
            U12(tt(),V2) -> U13(isNat(activate(V2)))
            U13(tt()) -> tt()
            U21(tt(),V1) -> U22(isNat(activate(V1)))
            U22(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__and(X1,X2)) -> and(X1,X2)
            activate(n__isNatKind(X)) -> isNatKind(X)
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            and(X1,X2) -> n__and(X1,X2)
            and(tt(),X) -> activate(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                        ,activate(V1)
                                        ,activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(X) -> n__isNatKind(X)
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
            isNatKind(n__s(V1)) -> isNatKind(activate(V1))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/2,U13/1,U21/2,U22/1,U31/2,U41/3,activate/1,and/2,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3
            ,U12#/2,U13#/1,U21#/2,U22#/1,U31#/2,U41#/3,activate#/1,and#/2,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0
            ,n__and/2,n__isNatKind/1,n__plus/2,n__s/1,tt/0,c_1/0,c_2/4,c_3/3,c_4/0,c_5/3,c_6/0,c_7/1,c_8/4,c_9/0,c_10/1
            ,c_11/1,c_12/1,c_13/1,c_14/1,c_15/0,c_16/1,c_17/0,c_18/7,c_19/4,c_20/0,c_21/0,c_22/4,c_23/2,c_24/0,c_25/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U21#,U22#,U31#,U41#,activate#,and#
            ,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__and,n__isNatKind,n__plus,n__s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {6,9,10}
        by application of
          Pre({6,9,10}) = {1,2,3,4,5,11,12,13,14,15}.
        Here rules are labelled as follows:
          1: U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
          2: U12#(tt(),V2) -> c_3(U13#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          3: U21#(tt(),V1) -> c_5(U22#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          4: U31#(tt(),N) -> c_7(activate#(N))
          5: U41#(tt(),M,N) -> c_8(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
          6: activate#(n__0()) -> c_10(0#())
          7: activate#(n__and(X1,X2)) -> c_11(and#(X1,X2))
          8: activate#(n__isNatKind(X)) -> c_12(isNatKind#(X))
          9: activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2))
          10: activate#(n__s(X)) -> c_14(s#(X))
          11: and#(tt(),X) -> c_16(activate#(X))
          12: isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                 ,activate(V1)
                                                 ,activate(V2))
                                            ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2)
                                            ,activate#(V1)
                                            ,activate#(V2))
          13: isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1))
          14: isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                ,isNatKind#(activate(V1))
                                                ,activate#(V1)
                                                ,activate#(V2))
          15: isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1))
          16: 0#() -> c_1()
          17: U13#(tt()) -> c_4()
          18: U22#(tt()) -> c_6()
          19: activate#(X) -> c_9()
          20: and#(X1,X2) -> c_15()
          21: isNat#(n__0()) -> c_17()
          22: isNatKind#(X) -> c_20()
          23: isNatKind#(n__0()) -> c_21()
          24: plus#(X1,X2) -> c_24()
          25: s#(X) -> c_25()
* Step 6: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V2) -> c_3(U13#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_5(U22#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U31#(tt(),N) -> c_7(activate#(N))
            U41#(tt(),M,N) -> c_8(s#(plus(activate(N),activate(M)))
                                 ,plus#(activate(N),activate(M))
                                 ,activate#(N)
                                 ,activate#(M))
            activate#(n__and(X1,X2)) -> c_11(and#(X1,X2))
            activate#(n__isNatKind(X)) -> c_12(isNatKind#(X))
            and#(tt(),X) -> c_16(activate#(X))
            isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                               ,activate(V1)
                                               ,activate(V2))
                                          ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1))
        - Weak DPs:
            0#() -> c_1()
            U13#(tt()) -> c_4()
            U22#(tt()) -> c_6()
            activate#(X) -> c_9()
            activate#(n__0()) -> c_10(0#())
            activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2))
            activate#(n__s(X)) -> c_14(s#(X))
            and#(X1,X2) -> c_15()
            isNat#(n__0()) -> c_17()
            isNatKind#(X) -> c_20()
            isNatKind#(n__0()) -> c_21()
            plus#(X1,X2) -> c_24()
            s#(X) -> c_25()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNat(activate(V1)),activate(V2))
            U12(tt(),V2) -> U13(isNat(activate(V2)))
            U13(tt()) -> tt()
            U21(tt(),V1) -> U22(isNat(activate(V1)))
            U22(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__and(X1,X2)) -> and(X1,X2)
            activate(n__isNatKind(X)) -> isNatKind(X)
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            and(X1,X2) -> n__and(X1,X2)
            and(tt(),X) -> activate(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                        ,activate(V1)
                                        ,activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(X) -> n__isNatKind(X)
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
            isNatKind(n__s(V1)) -> isNatKind(activate(V1))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/2,U13/1,U21/2,U22/1,U31/2,U41/3,activate/1,and/2,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3
            ,U12#/2,U13#/1,U21#/2,U22#/1,U31#/2,U41#/3,activate#/1,and#/2,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0
            ,n__and/2,n__isNatKind/1,n__plus/2,n__s/1,tt/0,c_1/0,c_2/4,c_3/3,c_4/0,c_5/3,c_6/0,c_7/1,c_8/4,c_9/0,c_10/1
            ,c_11/1,c_12/1,c_13/1,c_14/1,c_15/0,c_16/1,c_17/0,c_18/7,c_19/4,c_20/0,c_21/0,c_22/4,c_23/2,c_24/0,c_25/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U21#,U22#,U31#,U41#,activate#,and#
            ,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__and,n__isNatKind,n__plus,n__s,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                     ,isNat#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_4 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_3 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_4 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_3 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_4 activate#(n__0()) -> c_10(0#()):17
             -->_3 activate#(n__0()) -> c_10(0#()):17
             -->_2 isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):10
             -->_2 isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                      ,activate(V1)
                                                      ,activate(V2))
                                                 ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):9
             -->_4 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_4 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_1 U12#(tt(),V2) -> c_3(U13#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):2
             -->_2 isNat#(n__0()) -> c_17():21
             -->_4 activate#(X) -> c_9():16
             -->_3 activate#(X) -> c_9():16
          
          2:S:U12#(tt(),V2) -> c_3(U13#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
             -->_3 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_3 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_3 activate#(n__0()) -> c_10(0#()):17
             -->_2 isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):10
             -->_2 isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                      ,activate(V1)
                                                      ,activate(V2))
                                                 ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):9
             -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_2 isNat#(n__0()) -> c_17():21
             -->_3 activate#(X) -> c_9():16
             -->_1 U13#(tt()) -> c_4():14
          
          3:S:U21#(tt(),V1) -> c_5(U22#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
             -->_3 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_3 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_3 activate#(n__0()) -> c_10(0#()):17
             -->_2 isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):10
             -->_2 isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                      ,activate(V1)
                                                      ,activate(V2))
                                                 ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):9
             -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_2 isNat#(n__0()) -> c_17():21
             -->_3 activate#(X) -> c_9():16
             -->_1 U22#(tt()) -> c_6():15
          
          4:S:U31#(tt(),N) -> c_7(activate#(N))
             -->_1 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_1 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_1 activate#(n__0()) -> c_10(0#()):17
             -->_1 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_1 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_1 activate#(X) -> c_9():16
          
          5:S:U41#(tt(),M,N) -> c_8(s#(plus(activate(N),activate(M)))
                                   ,plus#(activate(N),activate(M))
                                   ,activate#(N)
                                   ,activate#(M))
             -->_4 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_3 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_4 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_3 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_4 activate#(n__0()) -> c_10(0#()):17
             -->_3 activate#(n__0()) -> c_10(0#()):17
             -->_4 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_4 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_1 s#(X) -> c_25():25
             -->_2 plus#(X1,X2) -> c_24():24
             -->_4 activate#(X) -> c_9():16
             -->_3 activate#(X) -> c_9():16
          
          6:S:activate#(n__and(X1,X2)) -> c_11(and#(X1,X2))
             -->_1 and#(tt(),X) -> c_16(activate#(X)):8
             -->_1 and#(X1,X2) -> c_15():20
          
          7:S:activate#(n__isNatKind(X)) -> c_12(isNatKind#(X))
             -->_1 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):11
             -->_1 isNatKind#(n__0()) -> c_21():23
             -->_1 isNatKind#(X) -> c_20():22
          
          8:S:and#(tt(),X) -> c_16(activate#(X))
             -->_1 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_1 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_1 activate#(n__0()) -> c_10(0#()):17
             -->_1 activate#(X) -> c_9():16
             -->_1 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_1 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
          
          9:S:isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                 ,activate(V1)
                                                 ,activate(V2))
                                            ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2)
                                            ,activate#(V1)
                                            ,activate#(V2))
             -->_7 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_6 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_5 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_4 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_7 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_6 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_5 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_4 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_7 activate#(n__0()) -> c_10(0#()):17
             -->_6 activate#(n__0()) -> c_10(0#()):17
             -->_5 activate#(n__0()) -> c_10(0#()):17
             -->_4 activate#(n__0()) -> c_10(0#()):17
             -->_3 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
             -->_3 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):11
             -->_3 isNatKind#(n__0()) -> c_21():23
             -->_3 isNatKind#(X) -> c_20():22
             -->_2 and#(X1,X2) -> c_15():20
             -->_7 activate#(X) -> c_9():16
             -->_6 activate#(X) -> c_9():16
             -->_5 activate#(X) -> c_9():16
             -->_4 activate#(X) -> c_9():16
             -->_2 and#(tt(),X) -> c_16(activate#(X)):8
             -->_7 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_6 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_5 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_4 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_7 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_6 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_5 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_4 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)):1
          
          10:S:isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1))
             -->_4 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_3 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_4 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_3 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_4 activate#(n__0()) -> c_10(0#()):17
             -->_3 activate#(n__0()) -> c_10(0#()):17
             -->_2 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):11
             -->_2 isNatKind#(n__0()) -> c_21():23
             -->_2 isNatKind#(X) -> c_20():22
             -->_4 activate#(X) -> c_9():16
             -->_3 activate#(X) -> c_9():16
             -->_4 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_4 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_1 U21#(tt(),V1) -> c_5(U22#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):3
          
          11:S:isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2))
             -->_4 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_3 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_4 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_3 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_4 activate#(n__0()) -> c_10(0#()):17
             -->_3 activate#(n__0()) -> c_10(0#()):17
             -->_2 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
             -->_2 isNatKind#(n__0()) -> c_21():23
             -->_2 isNatKind#(X) -> c_20():22
             -->_1 and#(X1,X2) -> c_15():20
             -->_4 activate#(X) -> c_9():16
             -->_3 activate#(X) -> c_9():16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):11
             -->_1 and#(tt(),X) -> c_16(activate#(X)):8
             -->_4 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_4 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
          
          12:S:isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1))
             -->_2 activate#(n__s(X)) -> c_14(s#(X)):19
             -->_2 activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2)):18
             -->_2 activate#(n__0()) -> c_10(0#()):17
             -->_1 isNatKind#(n__0()) -> c_21():23
             -->_1 isNatKind#(X) -> c_20():22
             -->_2 activate#(X) -> c_9():16
             -->_1 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):11
             -->_2 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_2 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
          
          13:W:0#() -> c_1()
             
          
          14:W:U13#(tt()) -> c_4()
             
          
          15:W:U22#(tt()) -> c_6()
             
          
          16:W:activate#(X) -> c_9()
             
          
          17:W:activate#(n__0()) -> c_10(0#())
             -->_1 0#() -> c_1():13
          
          18:W:activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2))
             -->_1 plus#(X1,X2) -> c_24():24
          
          19:W:activate#(n__s(X)) -> c_14(s#(X))
             -->_1 s#(X) -> c_25():25
          
          20:W:and#(X1,X2) -> c_15()
             
          
          21:W:isNat#(n__0()) -> c_17()
             
          
          22:W:isNatKind#(X) -> c_20()
             
          
          23:W:isNatKind#(n__0()) -> c_21()
             
          
          24:W:plus#(X1,X2) -> c_24()
             
          
          25:W:s#(X) -> c_25()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          14: U13#(tt()) -> c_4()
          15: U22#(tt()) -> c_6()
          21: isNat#(n__0()) -> c_17()
          20: and#(X1,X2) -> c_15()
          16: activate#(X) -> c_9()
          22: isNatKind#(X) -> c_20()
          23: isNatKind#(n__0()) -> c_21()
          17: activate#(n__0()) -> c_10(0#())
          13: 0#() -> c_1()
          18: activate#(n__plus(X1,X2)) -> c_13(plus#(X1,X2))
          24: plus#(X1,X2) -> c_24()
          19: activate#(n__s(X)) -> c_14(s#(X))
          25: s#(X) -> c_25()
* Step 7: SimplifyRHS MAYBE
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V2) -> c_3(U13#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_5(U22#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U31#(tt(),N) -> c_7(activate#(N))
            U41#(tt(),M,N) -> c_8(s#(plus(activate(N),activate(M)))
                                 ,plus#(activate(N),activate(M))
                                 ,activate#(N)
                                 ,activate#(M))
            activate#(n__and(X1,X2)) -> c_11(and#(X1,X2))
            activate#(n__isNatKind(X)) -> c_12(isNatKind#(X))
            and#(tt(),X) -> c_16(activate#(X))
            isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                               ,activate(V1)
                                               ,activate(V2))
                                          ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNat(activate(V1)),activate(V2))
            U12(tt(),V2) -> U13(isNat(activate(V2)))
            U13(tt()) -> tt()
            U21(tt(),V1) -> U22(isNat(activate(V1)))
            U22(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__and(X1,X2)) -> and(X1,X2)
            activate(n__isNatKind(X)) -> isNatKind(X)
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            and(X1,X2) -> n__and(X1,X2)
            and(tt(),X) -> activate(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                        ,activate(V1)
                                        ,activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(X) -> n__isNatKind(X)
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
            isNatKind(n__s(V1)) -> isNatKind(activate(V1))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/2,U13/1,U21/2,U22/1,U31/2,U41/3,activate/1,and/2,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3
            ,U12#/2,U13#/1,U21#/2,U22#/1,U31#/2,U41#/3,activate#/1,and#/2,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0
            ,n__and/2,n__isNatKind/1,n__plus/2,n__s/1,tt/0,c_1/0,c_2/4,c_3/3,c_4/0,c_5/3,c_6/0,c_7/1,c_8/4,c_9/0,c_10/1
            ,c_11/1,c_12/1,c_13/1,c_14/1,c_15/0,c_16/1,c_17/0,c_18/7,c_19/4,c_20/0,c_21/0,c_22/4,c_23/2,c_24/0,c_25/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U21#,U22#,U31#,U41#,activate#,and#
            ,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__and,n__isNatKind,n__plus,n__s,tt}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                     ,isNat#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):10
             -->_2 isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                      ,activate(V1)
                                                      ,activate(V2))
                                                 ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):9
             -->_4 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_4 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_1 U12#(tt(),V2) -> c_3(U13#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):2
          
          2:S:U12#(tt(),V2) -> c_3(U13#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
             -->_2 isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):10
             -->_2 isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                      ,activate(V1)
                                                      ,activate(V2))
                                                 ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):9
             -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
          
          3:S:U21#(tt(),V1) -> c_5(U22#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
             -->_2 isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):10
             -->_2 isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                      ,activate(V1)
                                                      ,activate(V2))
                                                 ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):9
             -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
          
          4:S:U31#(tt(),N) -> c_7(activate#(N))
             -->_1 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_1 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
          
          5:S:U41#(tt(),M,N) -> c_8(s#(plus(activate(N),activate(M)))
                                   ,plus#(activate(N),activate(M))
                                   ,activate#(N)
                                   ,activate#(M))
             -->_4 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_4 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
          
          6:S:activate#(n__and(X1,X2)) -> c_11(and#(X1,X2))
             -->_1 and#(tt(),X) -> c_16(activate#(X)):8
          
          7:S:activate#(n__isNatKind(X)) -> c_12(isNatKind#(X))
             -->_1 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):11
          
          8:S:and#(tt(),X) -> c_16(activate#(X))
             -->_1 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_1 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
          
          9:S:isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                 ,activate(V1)
                                                 ,activate(V2))
                                            ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2)
                                            ,activate#(V1)
                                            ,activate#(V2))
             -->_3 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
             -->_3 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):11
             -->_2 and#(tt(),X) -> c_16(activate#(X)):8
             -->_7 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_6 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_5 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_4 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_7 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_6 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_5 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_4 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)):1
          
          10:S:isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1))
             -->_2 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):11
             -->_4 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_4 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_1 U21#(tt(),V1) -> c_5(U22#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):3
          
          11:S:isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):11
             -->_1 and#(tt(),X) -> c_16(activate#(X)):8
             -->_4 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_4 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
             -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
          
          12:S:isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1))
             -->_1 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):11
             -->_2 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
             -->_2 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          U12#(tt(),V2) -> c_3(isNat#(activate(V2)),activate#(V2))
          U21#(tt(),V1) -> c_5(isNat#(activate(V1)),activate#(V1))
          U41#(tt(),M,N) -> c_8(activate#(N),activate#(M))
* Step 8: RemoveHeads MAYBE
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V2) -> c_3(isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_5(isNat#(activate(V1)),activate#(V1))
            U31#(tt(),N) -> c_7(activate#(N))
            U41#(tt(),M,N) -> c_8(activate#(N),activate#(M))
            activate#(n__and(X1,X2)) -> c_11(and#(X1,X2))
            activate#(n__isNatKind(X)) -> c_12(isNatKind#(X))
            and#(tt(),X) -> c_16(activate#(X))
            isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                               ,activate(V1)
                                               ,activate(V2))
                                          ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNat(activate(V1)),activate(V2))
            U12(tt(),V2) -> U13(isNat(activate(V2)))
            U13(tt()) -> tt()
            U21(tt(),V1) -> U22(isNat(activate(V1)))
            U22(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__and(X1,X2)) -> and(X1,X2)
            activate(n__isNatKind(X)) -> isNatKind(X)
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            and(X1,X2) -> n__and(X1,X2)
            and(tt(),X) -> activate(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                        ,activate(V1)
                                        ,activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(X) -> n__isNatKind(X)
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
            isNatKind(n__s(V1)) -> isNatKind(activate(V1))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/2,U13/1,U21/2,U22/1,U31/2,U41/3,activate/1,and/2,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3
            ,U12#/2,U13#/1,U21#/2,U22#/1,U31#/2,U41#/3,activate#/1,and#/2,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0
            ,n__and/2,n__isNatKind/1,n__plus/2,n__s/1,tt/0,c_1/0,c_2/4,c_3/2,c_4/0,c_5/2,c_6/0,c_7/1,c_8/2,c_9/0,c_10/1
            ,c_11/1,c_12/1,c_13/1,c_14/1,c_15/0,c_16/1,c_17/0,c_18/7,c_19/4,c_20/0,c_21/0,c_22/4,c_23/2,c_24/0,c_25/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U21#,U22#,U31#,U41#,activate#,and#
            ,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__and,n__isNatKind,n__plus,n__s,tt}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
           -->_2 isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                         ,isNatKind#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V1)):10
           -->_2 isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                    ,activate(V1)
                                                    ,activate(V2))
                                               ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)
                                               ,activate#(V2)
                                               ,activate#(V1)
                                               ,activate#(V2)):9
           -->_4 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_4 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
           -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
           -->_1 U12#(tt(),V2) -> c_3(isNat#(activate(V2)),activate#(V2)):2
        
        2:S:U12#(tt(),V2) -> c_3(isNat#(activate(V2)),activate#(V2))
           -->_1 isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                         ,isNatKind#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V1)):10
           -->_1 isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                    ,activate(V1)
                                                    ,activate(V2))
                                               ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)
                                               ,activate#(V2)
                                               ,activate#(V1)
                                               ,activate#(V2)):9
           -->_2 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_2 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
        
        3:S:U21#(tt(),V1) -> c_5(isNat#(activate(V1)),activate#(V1))
           -->_1 isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                         ,isNatKind#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V1)):10
           -->_1 isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                    ,activate(V1)
                                                    ,activate(V2))
                                               ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)
                                               ,activate#(V2)
                                               ,activate#(V1)
                                               ,activate#(V2)):9
           -->_2 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_2 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
        
        4:S:U31#(tt(),N) -> c_7(activate#(N))
           -->_1 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_1 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
        
        5:S:U41#(tt(),M,N) -> c_8(activate#(N),activate#(M))
           -->_2 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_1 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_2 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
           -->_1 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
        
        6:S:activate#(n__and(X1,X2)) -> c_11(and#(X1,X2))
           -->_1 and#(tt(),X) -> c_16(activate#(X)):8
        
        7:S:activate#(n__isNatKind(X)) -> c_12(isNatKind#(X))
           -->_1 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
           -->_1 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                   ,isNatKind#(activate(V1))
                                                   ,activate#(V1)
                                                   ,activate#(V2)):11
        
        8:S:and#(tt(),X) -> c_16(activate#(X))
           -->_1 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_1 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
        
        9:S:isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                               ,activate(V1)
                                               ,activate(V2))
                                          ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2))
           -->_3 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
           -->_3 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                   ,isNatKind#(activate(V1))
                                                   ,activate#(V1)
                                                   ,activate#(V2)):11
           -->_2 and#(tt(),X) -> c_16(activate#(X)):8
           -->_7 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_6 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_5 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_4 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_7 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
           -->_6 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
           -->_5 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
           -->_4 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
           -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                        ,isNat#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V2)):1
        
        10:S:isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                     ,isNatKind#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V1))
           -->_2 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                   ,isNatKind#(activate(V1))
                                                   ,activate#(V1)
                                                   ,activate#(V2)):11
           -->_4 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_4 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
           -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
           -->_1 U21#(tt(),V1) -> c_5(isNat#(activate(V1)),activate#(V1)):3
        
        11:S:isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)
                                               ,activate#(V2))
           -->_2 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                   ,isNatKind#(activate(V1))
                                                   ,activate#(V1)
                                                   ,activate#(V2)):11
           -->_1 and#(tt(),X) -> c_16(activate#(X)):8
           -->_4 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_3 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_4 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
           -->_3 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
        
        12:S:isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1))
           -->_1 isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1)):12
           -->_1 isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                                   ,isNatKind#(activate(V1))
                                                   ,activate#(V1)
                                                   ,activate#(V2)):11
           -->_2 activate#(n__isNatKind(X)) -> c_12(isNatKind#(X)):7
           -->_2 activate#(n__and(X1,X2)) -> c_11(and#(X1,X2)):6
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(4,U31#(tt(),N) -> c_7(activate#(N))),(5,U41#(tt(),M,N) -> c_8(activate#(N),activate#(M)))]
* Step 9: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          U11#(tt(),V1,V2) -> c_2(U12#(isNat(activate(V1)),activate(V2))
                                 ,isNat#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V2))
          U12#(tt(),V2) -> c_3(isNat#(activate(V2)),activate#(V2))
          U21#(tt(),V1) -> c_5(isNat#(activate(V1)),activate#(V1))
          activate#(n__and(X1,X2)) -> c_11(and#(X1,X2))
          activate#(n__isNatKind(X)) -> c_12(isNatKind#(X))
          and#(tt(),X) -> c_16(activate#(X))
          isNat#(n__plus(V1,V2)) -> c_18(U11#(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                             ,activate(V1)
                                             ,activate(V2))
                                        ,and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                        ,isNatKind#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V2)
                                        ,activate#(V1)
                                        ,activate#(V2))
          isNat#(n__s(V1)) -> c_19(U21#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
          isNatKind#(n__plus(V1,V2)) -> c_22(and#(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          isNatKind#(n__s(V1)) -> c_23(isNatKind#(activate(V1)),activate#(V1))
      - Weak TRS:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNat(activate(V1)),activate(V2))
          U12(tt(),V2) -> U13(isNat(activate(V2)))
          U13(tt()) -> tt()
          U21(tt(),V1) -> U22(isNat(activate(V1)))
          U22(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__and(X1,X2)) -> and(X1,X2)
          activate(n__isNatKind(X)) -> isNatKind(X)
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          and(X1,X2) -> n__and(X1,X2)
          and(tt(),X) -> activate(X)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
                                      ,activate(V1)
                                      ,activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(X) -> n__isNatKind(X)
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatKind(activate(V2)))
          isNatKind(n__s(V1)) -> isNatKind(activate(V1))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
      - Signature:
          {0/0,U11/3,U12/2,U13/1,U21/2,U22/1,U31/2,U41/3,activate/1,and/2,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3
          ,U12#/2,U13#/1,U21#/2,U22#/1,U31#/2,U41#/3,activate#/1,and#/2,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0
          ,n__and/2,n__isNatKind/1,n__plus/2,n__s/1,tt/0,c_1/0,c_2/4,c_3/2,c_4/0,c_5/2,c_6/0,c_7/1,c_8/2,c_9/0,c_10/1
          ,c_11/1,c_12/1,c_13/1,c_14/1,c_15/0,c_16/1,c_17/0,c_18/7,c_19/4,c_20/0,c_21/0,c_22/4,c_23/2,c_24/0,c_25/0}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U21#,U22#,U31#,U41#,activate#,and#
          ,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__and,n__isNatKind,n__plus,n__s,tt}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE