MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            if(false(),b,x,y) -> if2(b,x,y)
            if(true(),b,x,y) -> log_undefined()
            if2(false(),x,y) -> log2(quot(x,s(s(0()))),y)
            if2(true(),x,s(y)) -> y
            inc(0()) -> 0()
            inc(s(x)) -> s(inc(x))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            log(x) -> log2(x,0())
            log2(x,y) -> if(le(x,0()),le(x,s(0())),x,inc(y))
            minus(x,0()) -> x
            minus(0(),y) -> 0()
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if/4,if2/3,inc/1,le/2,log/1,log2/2,minus/2,quot/2} / {0/0,false/0,log_undefined/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if,if2,inc,le,log,log2,minus,quot} and constructors {0
            ,false,log_undefined,s,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          if#(false(),b,x,y) -> c_1(if2#(b,x,y))
          if#(true(),b,x,y) -> c_2()
          if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0()))))
          if2#(true(),x,s(y)) -> c_4()
          inc#(0()) -> c_5()
          inc#(s(x)) -> c_6(inc#(x))
          le#(0(),y) -> c_7()
          le#(s(x),0()) -> c_8()
          le#(s(x),s(y)) -> c_9(le#(x,y))
          log#(x) -> c_10(log2#(x,0()))
          log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,0()),le#(x,s(0())),inc#(y))
          minus#(x,0()) -> c_12()
          minus#(0(),y) -> c_13()
          minus#(s(x),s(y)) -> c_14(minus#(x,y))
          quot#(0(),s(y)) -> c_15()
          quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            if#(false(),b,x,y) -> c_1(if2#(b,x,y))
            if#(true(),b,x,y) -> c_2()
            if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0()))))
            if2#(true(),x,s(y)) -> c_4()
            inc#(0()) -> c_5()
            inc#(s(x)) -> c_6(inc#(x))
            le#(0(),y) -> c_7()
            le#(s(x),0()) -> c_8()
            le#(s(x),s(y)) -> c_9(le#(x,y))
            log#(x) -> c_10(log2#(x,0()))
            log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,0()),le#(x,s(0())),inc#(y))
            minus#(x,0()) -> c_12()
            minus#(0(),y) -> c_13()
            minus#(s(x),s(y)) -> c_14(minus#(x,y))
            quot#(0(),s(y)) -> c_15()
            quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak TRS:
            if(false(),b,x,y) -> if2(b,x,y)
            if(true(),b,x,y) -> log_undefined()
            if2(false(),x,y) -> log2(quot(x,s(s(0()))),y)
            if2(true(),x,s(y)) -> y
            inc(0()) -> 0()
            inc(s(x)) -> s(inc(x))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            log(x) -> log2(x,0())
            log2(x,y) -> if(le(x,0()),le(x,s(0())),x,inc(y))
            minus(x,0()) -> x
            minus(0(),y) -> 0()
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if/4,if2/3,inc/1,le/2,log/1,log2/2,minus/2,quot/2,if#/4,if2#/3,inc#/1,le#/2,log#/1,log2#/2,minus#/2
            ,quot#/2} / {0/0,false/0,log_undefined/0,s/1,true/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1
            ,c_10/1,c_11/4,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,if2#,inc#,le#,log#,log2#,minus#
            ,quot#} and constructors {0,false,log_undefined,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          inc(0()) -> 0()
          inc(s(x)) -> s(inc(x))
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(0(),y) -> 0()
          minus(s(x),s(y)) -> minus(x,y)
          quot(0(),s(y)) -> 0()
          quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
          if#(false(),b,x,y) -> c_1(if2#(b,x,y))
          if#(true(),b,x,y) -> c_2()
          if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0()))))
          if2#(true(),x,s(y)) -> c_4()
          inc#(0()) -> c_5()
          inc#(s(x)) -> c_6(inc#(x))
          le#(0(),y) -> c_7()
          le#(s(x),0()) -> c_8()
          le#(s(x),s(y)) -> c_9(le#(x,y))
          log#(x) -> c_10(log2#(x,0()))
          log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,0()),le#(x,s(0())),inc#(y))
          minus#(x,0()) -> c_12()
          minus#(0(),y) -> c_13()
          minus#(s(x),s(y)) -> c_14(minus#(x,y))
          quot#(0(),s(y)) -> c_15()
          quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y))
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            if#(false(),b,x,y) -> c_1(if2#(b,x,y))
            if#(true(),b,x,y) -> c_2()
            if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0()))))
            if2#(true(),x,s(y)) -> c_4()
            inc#(0()) -> c_5()
            inc#(s(x)) -> c_6(inc#(x))
            le#(0(),y) -> c_7()
            le#(s(x),0()) -> c_8()
            le#(s(x),s(y)) -> c_9(le#(x,y))
            log#(x) -> c_10(log2#(x,0()))
            log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,0()),le#(x,s(0())),inc#(y))
            minus#(x,0()) -> c_12()
            minus#(0(),y) -> c_13()
            minus#(s(x),s(y)) -> c_14(minus#(x,y))
            quot#(0(),s(y)) -> c_15()
            quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak TRS:
            inc(0()) -> 0()
            inc(s(x)) -> s(inc(x))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(0(),y) -> 0()
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if/4,if2/3,inc/1,le/2,log/1,log2/2,minus/2,quot/2,if#/4,if2#/3,inc#/1,le#/2,log#/1,log2#/2,minus#/2
            ,quot#/2} / {0/0,false/0,log_undefined/0,s/1,true/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1
            ,c_10/1,c_11/4,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,if2#,inc#,le#,log#,log2#,minus#
            ,quot#} and constructors {0,false,log_undefined,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,4,5,7,8,12,13,15}
        by application of
          Pre({2,4,5,7,8,12,13,15}) = {1,3,6,9,11,14,16}.
        Here rules are labelled as follows:
          1: if#(false(),b,x,y) -> c_1(if2#(b,x,y))
          2: if#(true(),b,x,y) -> c_2()
          3: if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0()))))
          4: if2#(true(),x,s(y)) -> c_4()
          5: inc#(0()) -> c_5()
          6: inc#(s(x)) -> c_6(inc#(x))
          7: le#(0(),y) -> c_7()
          8: le#(s(x),0()) -> c_8()
          9: le#(s(x),s(y)) -> c_9(le#(x,y))
          10: log#(x) -> c_10(log2#(x,0()))
          11: log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,0()),le#(x,s(0())),inc#(y))
          12: minus#(x,0()) -> c_12()
          13: minus#(0(),y) -> c_13()
          14: minus#(s(x),s(y)) -> c_14(minus#(x,y))
          15: quot#(0(),s(y)) -> c_15()
          16: quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y))
* Step 4: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            if#(false(),b,x,y) -> c_1(if2#(b,x,y))
            if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0()))))
            inc#(s(x)) -> c_6(inc#(x))
            le#(s(x),s(y)) -> c_9(le#(x,y))
            log#(x) -> c_10(log2#(x,0()))
            log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,0()),le#(x,s(0())),inc#(y))
            minus#(s(x),s(y)) -> c_14(minus#(x,y))
            quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak DPs:
            if#(true(),b,x,y) -> c_2()
            if2#(true(),x,s(y)) -> c_4()
            inc#(0()) -> c_5()
            le#(0(),y) -> c_7()
            le#(s(x),0()) -> c_8()
            minus#(x,0()) -> c_12()
            minus#(0(),y) -> c_13()
            quot#(0(),s(y)) -> c_15()
        - Weak TRS:
            inc(0()) -> 0()
            inc(s(x)) -> s(inc(x))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(0(),y) -> 0()
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if/4,if2/3,inc/1,le/2,log/1,log2/2,minus/2,quot/2,if#/4,if2#/3,inc#/1,le#/2,log#/1,log2#/2,minus#/2
            ,quot#/2} / {0/0,false/0,log_undefined/0,s/1,true/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1
            ,c_10/1,c_11/4,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,if2#,inc#,le#,log#,log2#,minus#
            ,quot#} and constructors {0,false,log_undefined,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:if#(false(),b,x,y) -> c_1(if2#(b,x,y))
             -->_1 if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0())))):2
             -->_1 if2#(true(),x,s(y)) -> c_4():10
          
          2:S:if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0()))))
             -->_2 quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y)):8
             -->_1 log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,0()),le#(x,s(0())),inc#(y)):6
             -->_2 quot#(0(),s(y)) -> c_15():16
          
          3:S:inc#(s(x)) -> c_6(inc#(x))
             -->_1 inc#(0()) -> c_5():11
             -->_1 inc#(s(x)) -> c_6(inc#(x)):3
          
          4:S:le#(s(x),s(y)) -> c_9(le#(x,y))
             -->_1 le#(s(x),0()) -> c_8():13
             -->_1 le#(0(),y) -> c_7():12
             -->_1 le#(s(x),s(y)) -> c_9(le#(x,y)):4
          
          5:S:log#(x) -> c_10(log2#(x,0()))
             -->_1 log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,0()),le#(x,s(0())),inc#(y)):6
          
          6:S:log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,0()),le#(x,s(0())),inc#(y))
             -->_2 le#(s(x),0()) -> c_8():13
             -->_3 le#(0(),y) -> c_7():12
             -->_2 le#(0(),y) -> c_7():12
             -->_4 inc#(0()) -> c_5():11
             -->_1 if#(true(),b,x,y) -> c_2():9
             -->_3 le#(s(x),s(y)) -> c_9(le#(x,y)):4
             -->_4 inc#(s(x)) -> c_6(inc#(x)):3
             -->_1 if#(false(),b,x,y) -> c_1(if2#(b,x,y)):1
          
          7:S:minus#(s(x),s(y)) -> c_14(minus#(x,y))
             -->_1 minus#(0(),y) -> c_13():15
             -->_1 minus#(x,0()) -> c_12():14
             -->_1 minus#(s(x),s(y)) -> c_14(minus#(x,y)):7
          
          8:S:quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y))
             -->_1 quot#(0(),s(y)) -> c_15():16
             -->_2 minus#(0(),y) -> c_13():15
             -->_2 minus#(x,0()) -> c_12():14
             -->_1 quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y)):8
             -->_2 minus#(s(x),s(y)) -> c_14(minus#(x,y)):7
          
          9:W:if#(true(),b,x,y) -> c_2()
             
          
          10:W:if2#(true(),x,s(y)) -> c_4()
             
          
          11:W:inc#(0()) -> c_5()
             
          
          12:W:le#(0(),y) -> c_7()
             
          
          13:W:le#(s(x),0()) -> c_8()
             
          
          14:W:minus#(x,0()) -> c_12()
             
          
          15:W:minus#(0(),y) -> c_13()
             
          
          16:W:quot#(0(),s(y)) -> c_15()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          10: if2#(true(),x,s(y)) -> c_4()
          9: if#(true(),b,x,y) -> c_2()
          11: inc#(0()) -> c_5()
          12: le#(0(),y) -> c_7()
          13: le#(s(x),0()) -> c_8()
          14: minus#(x,0()) -> c_12()
          15: minus#(0(),y) -> c_13()
          16: quot#(0(),s(y)) -> c_15()
* Step 5: SimplifyRHS MAYBE
    + Considered Problem:
        - Strict DPs:
            if#(false(),b,x,y) -> c_1(if2#(b,x,y))
            if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0()))))
            inc#(s(x)) -> c_6(inc#(x))
            le#(s(x),s(y)) -> c_9(le#(x,y))
            log#(x) -> c_10(log2#(x,0()))
            log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,0()),le#(x,s(0())),inc#(y))
            minus#(s(x),s(y)) -> c_14(minus#(x,y))
            quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak TRS:
            inc(0()) -> 0()
            inc(s(x)) -> s(inc(x))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(0(),y) -> 0()
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if/4,if2/3,inc/1,le/2,log/1,log2/2,minus/2,quot/2,if#/4,if2#/3,inc#/1,le#/2,log#/1,log2#/2,minus#/2
            ,quot#/2} / {0/0,false/0,log_undefined/0,s/1,true/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1
            ,c_10/1,c_11/4,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,if2#,inc#,le#,log#,log2#,minus#
            ,quot#} and constructors {0,false,log_undefined,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:if#(false(),b,x,y) -> c_1(if2#(b,x,y))
             -->_1 if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0())))):2
          
          2:S:if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0()))))
             -->_2 quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y)):8
             -->_1 log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,0()),le#(x,s(0())),inc#(y)):6
          
          3:S:inc#(s(x)) -> c_6(inc#(x))
             -->_1 inc#(s(x)) -> c_6(inc#(x)):3
          
          4:S:le#(s(x),s(y)) -> c_9(le#(x,y))
             -->_1 le#(s(x),s(y)) -> c_9(le#(x,y)):4
          
          5:S:log#(x) -> c_10(log2#(x,0()))
             -->_1 log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,0()),le#(x,s(0())),inc#(y)):6
          
          6:S:log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,0()),le#(x,s(0())),inc#(y))
             -->_3 le#(s(x),s(y)) -> c_9(le#(x,y)):4
             -->_4 inc#(s(x)) -> c_6(inc#(x)):3
             -->_1 if#(false(),b,x,y) -> c_1(if2#(b,x,y)):1
          
          7:S:minus#(s(x),s(y)) -> c_14(minus#(x,y))
             -->_1 minus#(s(x),s(y)) -> c_14(minus#(x,y)):7
          
          8:S:quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y))
             -->_1 quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y)):8
             -->_2 minus#(s(x),s(y)) -> c_14(minus#(x,y)):7
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,s(0())),inc#(y))
* Step 6: RemoveHeads MAYBE
    + Considered Problem:
        - Strict DPs:
            if#(false(),b,x,y) -> c_1(if2#(b,x,y))
            if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0()))))
            inc#(s(x)) -> c_6(inc#(x))
            le#(s(x),s(y)) -> c_9(le#(x,y))
            log#(x) -> c_10(log2#(x,0()))
            log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,s(0())),inc#(y))
            minus#(s(x),s(y)) -> c_14(minus#(x,y))
            quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak TRS:
            inc(0()) -> 0()
            inc(s(x)) -> s(inc(x))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(0(),y) -> 0()
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if/4,if2/3,inc/1,le/2,log/1,log2/2,minus/2,quot/2,if#/4,if2#/3,inc#/1,le#/2,log#/1,log2#/2,minus#/2
            ,quot#/2} / {0/0,false/0,log_undefined/0,s/1,true/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1
            ,c_10/1,c_11/3,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,if2#,inc#,le#,log#,log2#,minus#
            ,quot#} and constructors {0,false,log_undefined,s,true}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:if#(false(),b,x,y) -> c_1(if2#(b,x,y))
           -->_1 if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0())))):2
        
        2:S:if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0()))))
           -->_2 quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y)):8
           -->_1 log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,s(0())),inc#(y)):6
        
        3:S:inc#(s(x)) -> c_6(inc#(x))
           -->_1 inc#(s(x)) -> c_6(inc#(x)):3
        
        4:S:le#(s(x),s(y)) -> c_9(le#(x,y))
           -->_1 le#(s(x),s(y)) -> c_9(le#(x,y)):4
        
        5:S:log#(x) -> c_10(log2#(x,0()))
           -->_1 log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,s(0())),inc#(y)):6
        
        6:S:log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,s(0())),inc#(y))
           -->_2 le#(s(x),s(y)) -> c_9(le#(x,y)):4
           -->_3 inc#(s(x)) -> c_6(inc#(x)):3
           -->_1 if#(false(),b,x,y) -> c_1(if2#(b,x,y)):1
        
        7:S:minus#(s(x),s(y)) -> c_14(minus#(x,y))
           -->_1 minus#(s(x),s(y)) -> c_14(minus#(x,y)):7
        
        8:S:quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y))
           -->_1 quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y)):8
           -->_2 minus#(s(x),s(y)) -> c_14(minus#(x,y)):7
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(5,log#(x) -> c_10(log2#(x,0())))]
* Step 7: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          if#(false(),b,x,y) -> c_1(if2#(b,x,y))
          if2#(false(),x,y) -> c_3(log2#(quot(x,s(s(0()))),y),quot#(x,s(s(0()))))
          inc#(s(x)) -> c_6(inc#(x))
          le#(s(x),s(y)) -> c_9(le#(x,y))
          log2#(x,y) -> c_11(if#(le(x,0()),le(x,s(0())),x,inc(y)),le#(x,s(0())),inc#(y))
          minus#(s(x),s(y)) -> c_14(minus#(x,y))
          quot#(s(x),s(y)) -> c_16(quot#(minus(x,y),s(y)),minus#(x,y))
      - Weak TRS:
          inc(0()) -> 0()
          inc(s(x)) -> s(inc(x))
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(0(),y) -> 0()
          minus(s(x),s(y)) -> minus(x,y)
          quot(0(),s(y)) -> 0()
          quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
      - Signature:
          {if/4,if2/3,inc/1,le/2,log/1,log2/2,minus/2,quot/2,if#/4,if2#/3,inc#/1,le#/2,log#/1,log2#/2,minus#/2
          ,quot#/2} / {0/0,false/0,log_undefined/0,s/1,true/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1
          ,c_10/1,c_11/3,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {if#,if2#,inc#,le#,log#,log2#,minus#
          ,quot#} and constructors {0,false,log_undefined,s,true}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE