MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            10() -> s(s(s(s(s(s(s(s(s(s(0()))))))))))
            gen(x) -> if1(le(x,10()),x)
            if1(false(),x) -> nil()
            if1(true(),x) -> if2(x,x)
            if2(x,y) -> if3(le(y,10()),x,y)
            if3(false(),x,y) -> gen(s(x))
            if3(true(),x,y) -> cons(entry(x,y,times(x,y)),if2(x,s(y)))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            table() -> gen(s(0()))
            times(0(),y) -> 0()
            times(s(x),y) -> plus(y,times(x,y))
        - Signature:
            {10/0,gen/1,if1/2,if2/2,if3/3,le/2,plus/2,table/0,times/2} / {0/0,cons/2,entry/3,false/0,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {10,gen,if1,if2,if3,le,plus,table
            ,times} and constructors {0,cons,entry,false,nil,s,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          10#() -> c_1()
          gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()),10#())
          if1#(false(),x) -> c_3()
          if1#(true(),x) -> c_4(if2#(x,x))
          if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()),10#())
          if3#(false(),x,y) -> c_6(gen#(s(x)))
          if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y)))
          le#(0(),y) -> c_8()
          le#(s(x),0()) -> c_9()
          le#(s(x),s(y)) -> c_10(le#(x,y))
          plus#(0(),y) -> c_11()
          plus#(s(x),y) -> c_12(plus#(x,y))
          table#() -> c_13(gen#(s(0())))
          times#(0(),y) -> c_14()
          times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            10#() -> c_1()
            gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()),10#())
            if1#(false(),x) -> c_3()
            if1#(true(),x) -> c_4(if2#(x,x))
            if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()),10#())
            if3#(false(),x,y) -> c_6(gen#(s(x)))
            if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y)))
            le#(0(),y) -> c_8()
            le#(s(x),0()) -> c_9()
            le#(s(x),s(y)) -> c_10(le#(x,y))
            plus#(0(),y) -> c_11()
            plus#(s(x),y) -> c_12(plus#(x,y))
            table#() -> c_13(gen#(s(0())))
            times#(0(),y) -> c_14()
            times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y))
        - Weak TRS:
            10() -> s(s(s(s(s(s(s(s(s(s(0()))))))))))
            gen(x) -> if1(le(x,10()),x)
            if1(false(),x) -> nil()
            if1(true(),x) -> if2(x,x)
            if2(x,y) -> if3(le(y,10()),x,y)
            if3(false(),x,y) -> gen(s(x))
            if3(true(),x,y) -> cons(entry(x,y,times(x,y)),if2(x,s(y)))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            table() -> gen(s(0()))
            times(0(),y) -> 0()
            times(s(x),y) -> plus(y,times(x,y))
        - Signature:
            {10/0,gen/1,if1/2,if2/2,if3/3,le/2,plus/2,table/0,times/2,10#/0,gen#/1,if1#/2,if2#/2,if3#/3,le#/2,plus#/2
            ,table#/0,times#/2} / {0/0,cons/2,entry/3,false/0,nil/0,s/1,true/0,c_1/0,c_2/3,c_3/0,c_4/1,c_5/3,c_6/1,c_7/2
            ,c_8/0,c_9/0,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {10#,gen#,if1#,if2#,if3#,le#,plus#,table#
            ,times#} and constructors {0,cons,entry,false,nil,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          10() -> s(s(s(s(s(s(s(s(s(s(0()))))))))))
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          plus(0(),y) -> y
          plus(s(x),y) -> s(plus(x,y))
          times(0(),y) -> 0()
          times(s(x),y) -> plus(y,times(x,y))
          10#() -> c_1()
          gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()),10#())
          if1#(false(),x) -> c_3()
          if1#(true(),x) -> c_4(if2#(x,x))
          if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()),10#())
          if3#(false(),x,y) -> c_6(gen#(s(x)))
          if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y)))
          le#(0(),y) -> c_8()
          le#(s(x),0()) -> c_9()
          le#(s(x),s(y)) -> c_10(le#(x,y))
          plus#(0(),y) -> c_11()
          plus#(s(x),y) -> c_12(plus#(x,y))
          table#() -> c_13(gen#(s(0())))
          times#(0(),y) -> c_14()
          times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y))
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            10#() -> c_1()
            gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()),10#())
            if1#(false(),x) -> c_3()
            if1#(true(),x) -> c_4(if2#(x,x))
            if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()),10#())
            if3#(false(),x,y) -> c_6(gen#(s(x)))
            if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y)))
            le#(0(),y) -> c_8()
            le#(s(x),0()) -> c_9()
            le#(s(x),s(y)) -> c_10(le#(x,y))
            plus#(0(),y) -> c_11()
            plus#(s(x),y) -> c_12(plus#(x,y))
            table#() -> c_13(gen#(s(0())))
            times#(0(),y) -> c_14()
            times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y))
        - Weak TRS:
            10() -> s(s(s(s(s(s(s(s(s(s(0()))))))))))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            times(0(),y) -> 0()
            times(s(x),y) -> plus(y,times(x,y))
        - Signature:
            {10/0,gen/1,if1/2,if2/2,if3/3,le/2,plus/2,table/0,times/2,10#/0,gen#/1,if1#/2,if2#/2,if3#/3,le#/2,plus#/2
            ,table#/0,times#/2} / {0/0,cons/2,entry/3,false/0,nil/0,s/1,true/0,c_1/0,c_2/3,c_3/0,c_4/1,c_5/3,c_6/1,c_7/2
            ,c_8/0,c_9/0,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {10#,gen#,if1#,if2#,if3#,le#,plus#,table#
            ,times#} and constructors {0,cons,entry,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,3,8,9,11,14}
        by application of
          Pre({1,3,8,9,11,14}) = {2,5,7,10,12,15}.
        Here rules are labelled as follows:
          1: 10#() -> c_1()
          2: gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()),10#())
          3: if1#(false(),x) -> c_3()
          4: if1#(true(),x) -> c_4(if2#(x,x))
          5: if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()),10#())
          6: if3#(false(),x,y) -> c_6(gen#(s(x)))
          7: if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y)))
          8: le#(0(),y) -> c_8()
          9: le#(s(x),0()) -> c_9()
          10: le#(s(x),s(y)) -> c_10(le#(x,y))
          11: plus#(0(),y) -> c_11()
          12: plus#(s(x),y) -> c_12(plus#(x,y))
          13: table#() -> c_13(gen#(s(0())))
          14: times#(0(),y) -> c_14()
          15: times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y))
* Step 4: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()),10#())
            if1#(true(),x) -> c_4(if2#(x,x))
            if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()),10#())
            if3#(false(),x,y) -> c_6(gen#(s(x)))
            if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y)))
            le#(s(x),s(y)) -> c_10(le#(x,y))
            plus#(s(x),y) -> c_12(plus#(x,y))
            table#() -> c_13(gen#(s(0())))
            times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y))
        - Weak DPs:
            10#() -> c_1()
            if1#(false(),x) -> c_3()
            le#(0(),y) -> c_8()
            le#(s(x),0()) -> c_9()
            plus#(0(),y) -> c_11()
            times#(0(),y) -> c_14()
        - Weak TRS:
            10() -> s(s(s(s(s(s(s(s(s(s(0()))))))))))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            times(0(),y) -> 0()
            times(s(x),y) -> plus(y,times(x,y))
        - Signature:
            {10/0,gen/1,if1/2,if2/2,if3/3,le/2,plus/2,table/0,times/2,10#/0,gen#/1,if1#/2,if2#/2,if3#/3,le#/2,plus#/2
            ,table#/0,times#/2} / {0/0,cons/2,entry/3,false/0,nil/0,s/1,true/0,c_1/0,c_2/3,c_3/0,c_4/1,c_5/3,c_6/1,c_7/2
            ,c_8/0,c_9/0,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {10#,gen#,if1#,if2#,if3#,le#,plus#,table#
            ,times#} and constructors {0,cons,entry,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()),10#())
             -->_2 le#(s(x),s(y)) -> c_10(le#(x,y)):6
             -->_1 if1#(true(),x) -> c_4(if2#(x,x)):2
             -->_2 le#(s(x),0()) -> c_9():13
             -->_2 le#(0(),y) -> c_8():12
             -->_1 if1#(false(),x) -> c_3():11
             -->_3 10#() -> c_1():10
          
          2:S:if1#(true(),x) -> c_4(if2#(x,x))
             -->_1 if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()),10#()):3
          
          3:S:if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()),10#())
             -->_2 le#(s(x),s(y)) -> c_10(le#(x,y)):6
             -->_1 if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y))):5
             -->_1 if3#(false(),x,y) -> c_6(gen#(s(x))):4
             -->_2 le#(s(x),0()) -> c_9():13
             -->_2 le#(0(),y) -> c_8():12
             -->_3 10#() -> c_1():10
          
          4:S:if3#(false(),x,y) -> c_6(gen#(s(x)))
             -->_1 gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()),10#()):1
          
          5:S:if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y)))
             -->_1 times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y)):9
             -->_1 times#(0(),y) -> c_14():15
             -->_2 if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()),10#()):3
          
          6:S:le#(s(x),s(y)) -> c_10(le#(x,y))
             -->_1 le#(s(x),0()) -> c_9():13
             -->_1 le#(0(),y) -> c_8():12
             -->_1 le#(s(x),s(y)) -> c_10(le#(x,y)):6
          
          7:S:plus#(s(x),y) -> c_12(plus#(x,y))
             -->_1 plus#(0(),y) -> c_11():14
             -->_1 plus#(s(x),y) -> c_12(plus#(x,y)):7
          
          8:S:table#() -> c_13(gen#(s(0())))
             -->_1 gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()),10#()):1
          
          9:S:times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y))
             -->_2 times#(0(),y) -> c_14():15
             -->_1 plus#(0(),y) -> c_11():14
             -->_2 times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y)):9
             -->_1 plus#(s(x),y) -> c_12(plus#(x,y)):7
          
          10:W:10#() -> c_1()
             
          
          11:W:if1#(false(),x) -> c_3()
             
          
          12:W:le#(0(),y) -> c_8()
             
          
          13:W:le#(s(x),0()) -> c_9()
             
          
          14:W:plus#(0(),y) -> c_11()
             
          
          15:W:times#(0(),y) -> c_14()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          11: if1#(false(),x) -> c_3()
          10: 10#() -> c_1()
          14: plus#(0(),y) -> c_11()
          15: times#(0(),y) -> c_14()
          12: le#(0(),y) -> c_8()
          13: le#(s(x),0()) -> c_9()
* Step 5: SimplifyRHS MAYBE
    + Considered Problem:
        - Strict DPs:
            gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()),10#())
            if1#(true(),x) -> c_4(if2#(x,x))
            if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()),10#())
            if3#(false(),x,y) -> c_6(gen#(s(x)))
            if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y)))
            le#(s(x),s(y)) -> c_10(le#(x,y))
            plus#(s(x),y) -> c_12(plus#(x,y))
            table#() -> c_13(gen#(s(0())))
            times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y))
        - Weak TRS:
            10() -> s(s(s(s(s(s(s(s(s(s(0()))))))))))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            times(0(),y) -> 0()
            times(s(x),y) -> plus(y,times(x,y))
        - Signature:
            {10/0,gen/1,if1/2,if2/2,if3/3,le/2,plus/2,table/0,times/2,10#/0,gen#/1,if1#/2,if2#/2,if3#/3,le#/2,plus#/2
            ,table#/0,times#/2} / {0/0,cons/2,entry/3,false/0,nil/0,s/1,true/0,c_1/0,c_2/3,c_3/0,c_4/1,c_5/3,c_6/1,c_7/2
            ,c_8/0,c_9/0,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {10#,gen#,if1#,if2#,if3#,le#,plus#,table#
            ,times#} and constructors {0,cons,entry,false,nil,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()),10#())
             -->_2 le#(s(x),s(y)) -> c_10(le#(x,y)):6
             -->_1 if1#(true(),x) -> c_4(if2#(x,x)):2
          
          2:S:if1#(true(),x) -> c_4(if2#(x,x))
             -->_1 if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()),10#()):3
          
          3:S:if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()),10#())
             -->_2 le#(s(x),s(y)) -> c_10(le#(x,y)):6
             -->_1 if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y))):5
             -->_1 if3#(false(),x,y) -> c_6(gen#(s(x))):4
          
          4:S:if3#(false(),x,y) -> c_6(gen#(s(x)))
             -->_1 gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()),10#()):1
          
          5:S:if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y)))
             -->_1 times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y)):9
             -->_2 if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()),10#()):3
          
          6:S:le#(s(x),s(y)) -> c_10(le#(x,y))
             -->_1 le#(s(x),s(y)) -> c_10(le#(x,y)):6
          
          7:S:plus#(s(x),y) -> c_12(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_12(plus#(x,y)):7
          
          8:S:table#() -> c_13(gen#(s(0())))
             -->_1 gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()),10#()):1
          
          9:S:times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y))
             -->_2 times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y)):9
             -->_1 plus#(s(x),y) -> c_12(plus#(x,y)):7
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()))
          if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()))
* Step 6: RemoveHeads MAYBE
    + Considered Problem:
        - Strict DPs:
            gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()))
            if1#(true(),x) -> c_4(if2#(x,x))
            if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()))
            if3#(false(),x,y) -> c_6(gen#(s(x)))
            if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y)))
            le#(s(x),s(y)) -> c_10(le#(x,y))
            plus#(s(x),y) -> c_12(plus#(x,y))
            table#() -> c_13(gen#(s(0())))
            times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y))
        - Weak TRS:
            10() -> s(s(s(s(s(s(s(s(s(s(0()))))))))))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            times(0(),y) -> 0()
            times(s(x),y) -> plus(y,times(x,y))
        - Signature:
            {10/0,gen/1,if1/2,if2/2,if3/3,le/2,plus/2,table/0,times/2,10#/0,gen#/1,if1#/2,if2#/2,if3#/3,le#/2,plus#/2
            ,table#/0,times#/2} / {0/0,cons/2,entry/3,false/0,nil/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/2
            ,c_8/0,c_9/0,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {10#,gen#,if1#,if2#,if3#,le#,plus#,table#
            ,times#} and constructors {0,cons,entry,false,nil,s,true}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()))
           -->_2 le#(s(x),s(y)) -> c_10(le#(x,y)):6
           -->_1 if1#(true(),x) -> c_4(if2#(x,x)):2
        
        2:S:if1#(true(),x) -> c_4(if2#(x,x))
           -->_1 if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10())):3
        
        3:S:if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()))
           -->_2 le#(s(x),s(y)) -> c_10(le#(x,y)):6
           -->_1 if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y))):5
           -->_1 if3#(false(),x,y) -> c_6(gen#(s(x))):4
        
        4:S:if3#(false(),x,y) -> c_6(gen#(s(x)))
           -->_1 gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10())):1
        
        5:S:if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y)))
           -->_1 times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y)):9
           -->_2 if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10())):3
        
        6:S:le#(s(x),s(y)) -> c_10(le#(x,y))
           -->_1 le#(s(x),s(y)) -> c_10(le#(x,y)):6
        
        7:S:plus#(s(x),y) -> c_12(plus#(x,y))
           -->_1 plus#(s(x),y) -> c_12(plus#(x,y)):7
        
        8:S:table#() -> c_13(gen#(s(0())))
           -->_1 gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10())):1
        
        9:S:times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y))
           -->_2 times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y)):9
           -->_1 plus#(s(x),y) -> c_12(plus#(x,y)):7
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(8,table#() -> c_13(gen#(s(0()))))]
* Step 7: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          gen#(x) -> c_2(if1#(le(x,10()),x),le#(x,10()))
          if1#(true(),x) -> c_4(if2#(x,x))
          if2#(x,y) -> c_5(if3#(le(y,10()),x,y),le#(y,10()))
          if3#(false(),x,y) -> c_6(gen#(s(x)))
          if3#(true(),x,y) -> c_7(times#(x,y),if2#(x,s(y)))
          le#(s(x),s(y)) -> c_10(le#(x,y))
          plus#(s(x),y) -> c_12(plus#(x,y))
          times#(s(x),y) -> c_15(plus#(y,times(x,y)),times#(x,y))
      - Weak TRS:
          10() -> s(s(s(s(s(s(s(s(s(s(0()))))))))))
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          plus(0(),y) -> y
          plus(s(x),y) -> s(plus(x,y))
          times(0(),y) -> 0()
          times(s(x),y) -> plus(y,times(x,y))
      - Signature:
          {10/0,gen/1,if1/2,if2/2,if3/3,le/2,plus/2,table/0,times/2,10#/0,gen#/1,if1#/2,if2#/2,if3#/3,le#/2,plus#/2
          ,table#/0,times#/2} / {0/0,cons/2,entry/3,false/0,nil/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/2
          ,c_8/0,c_9/0,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/2}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {10#,gen#,if1#,if2#,if3#,le#,plus#,table#
          ,times#} and constructors {0,cons,entry,false,nil,s,true}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE