MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            del(x,cons(y,xs)) -> if2(eq(x,y),x,y,xs)
            del(x,nil()) -> nil()
            eq(0(),0()) -> true()
            eq(0(),s(y)) -> false()
            eq(s(x),0()) -> false()
            eq(s(x),s(y)) -> eq(x,y)
            ge(0(),0()) -> true()
            ge(0(),s(x)) -> false()
            ge(s(x),0()) -> true()
            ge(s(x),s(y)) -> ge(x,y)
            h(cons(x,xs)) -> cons(x,h(xs))
            h(nil()) -> nil()
            if1(false(),x,y,xs) -> max(cons(y,xs))
            if1(true(),x,y,xs) -> max(cons(x,xs))
            if2(false(),x,y,xs) -> cons(y,del(x,xs))
            if2(true(),x,y,xs) -> xs
            max(cons(x,cons(y,xs))) -> if1(ge(x,y),x,y,xs)
            max(cons(x,nil())) -> x
            max(nil()) -> 0()
            sort(cons(x,xs)) -> cons(max(cons(x,xs)),sort(h(del(max(cons(x,xs)),cons(x,xs)))))
            sort(nil()) -> nil()
        - Signature:
            {del/2,eq/2,ge/2,h/1,if1/4,if2/4,max/1,sort/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {del,eq,ge,h,if1,if2,max,sort} and constructors {0,cons
            ,false,nil,s,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          del#(x,cons(y,xs)) -> c_1(if2#(eq(x,y),x,y,xs),eq#(x,y))
          del#(x,nil()) -> c_2()
          eq#(0(),0()) -> c_3()
          eq#(0(),s(y)) -> c_4()
          eq#(s(x),0()) -> c_5()
          eq#(s(x),s(y)) -> c_6(eq#(x,y))
          ge#(0(),0()) -> c_7()
          ge#(0(),s(x)) -> c_8()
          ge#(s(x),0()) -> c_9()
          ge#(s(x),s(y)) -> c_10(ge#(x,y))
          h#(cons(x,xs)) -> c_11(h#(xs))
          h#(nil()) -> c_12()
          if1#(false(),x,y,xs) -> c_13(max#(cons(y,xs)))
          if1#(true(),x,y,xs) -> c_14(max#(cons(x,xs)))
          if2#(false(),x,y,xs) -> c_15(del#(x,xs))
          if2#(true(),x,y,xs) -> c_16()
          max#(cons(x,cons(y,xs))) -> c_17(if1#(ge(x,y),x,y,xs),ge#(x,y))
          max#(cons(x,nil())) -> c_18()
          max#(nil()) -> c_19()
          sort#(cons(x,xs)) -> c_20(max#(cons(x,xs))
                                   ,sort#(h(del(max(cons(x,xs)),cons(x,xs))))
                                   ,h#(del(max(cons(x,xs)),cons(x,xs)))
                                   ,del#(max(cons(x,xs)),cons(x,xs))
                                   ,max#(cons(x,xs)))
          sort#(nil()) -> c_21()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            del#(x,cons(y,xs)) -> c_1(if2#(eq(x,y),x,y,xs),eq#(x,y))
            del#(x,nil()) -> c_2()
            eq#(0(),0()) -> c_3()
            eq#(0(),s(y)) -> c_4()
            eq#(s(x),0()) -> c_5()
            eq#(s(x),s(y)) -> c_6(eq#(x,y))
            ge#(0(),0()) -> c_7()
            ge#(0(),s(x)) -> c_8()
            ge#(s(x),0()) -> c_9()
            ge#(s(x),s(y)) -> c_10(ge#(x,y))
            h#(cons(x,xs)) -> c_11(h#(xs))
            h#(nil()) -> c_12()
            if1#(false(),x,y,xs) -> c_13(max#(cons(y,xs)))
            if1#(true(),x,y,xs) -> c_14(max#(cons(x,xs)))
            if2#(false(),x,y,xs) -> c_15(del#(x,xs))
            if2#(true(),x,y,xs) -> c_16()
            max#(cons(x,cons(y,xs))) -> c_17(if1#(ge(x,y),x,y,xs),ge#(x,y))
            max#(cons(x,nil())) -> c_18()
            max#(nil()) -> c_19()
            sort#(cons(x,xs)) -> c_20(max#(cons(x,xs))
                                     ,sort#(h(del(max(cons(x,xs)),cons(x,xs))))
                                     ,h#(del(max(cons(x,xs)),cons(x,xs)))
                                     ,del#(max(cons(x,xs)),cons(x,xs))
                                     ,max#(cons(x,xs)))
            sort#(nil()) -> c_21()
        - Weak TRS:
            del(x,cons(y,xs)) -> if2(eq(x,y),x,y,xs)
            del(x,nil()) -> nil()
            eq(0(),0()) -> true()
            eq(0(),s(y)) -> false()
            eq(s(x),0()) -> false()
            eq(s(x),s(y)) -> eq(x,y)
            ge(0(),0()) -> true()
            ge(0(),s(x)) -> false()
            ge(s(x),0()) -> true()
            ge(s(x),s(y)) -> ge(x,y)
            h(cons(x,xs)) -> cons(x,h(xs))
            h(nil()) -> nil()
            if1(false(),x,y,xs) -> max(cons(y,xs))
            if1(true(),x,y,xs) -> max(cons(x,xs))
            if2(false(),x,y,xs) -> cons(y,del(x,xs))
            if2(true(),x,y,xs) -> xs
            max(cons(x,cons(y,xs))) -> if1(ge(x,y),x,y,xs)
            max(cons(x,nil())) -> x
            max(nil()) -> 0()
            sort(cons(x,xs)) -> cons(max(cons(x,xs)),sort(h(del(max(cons(x,xs)),cons(x,xs)))))
            sort(nil()) -> nil()
        - Signature:
            {del/2,eq/2,ge/2,h/1,if1/4,if2/4,max/1,sort/1,del#/2,eq#/2,ge#/2,h#/1,if1#/4,if2#/4,max#/1,sort#/1} / {0/0
            ,cons/2,false/0,nil/0,s/1,true/0,c_1/2,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/1,c_12/0
            ,c_13/1,c_14/1,c_15/1,c_16/0,c_17/2,c_18/0,c_19/0,c_20/5,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {del#,eq#,ge#,h#,if1#,if2#,max#,sort#} and constructors {0
            ,cons,false,nil,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          del(x,cons(y,xs)) -> if2(eq(x,y),x,y,xs)
          del(x,nil()) -> nil()
          eq(0(),0()) -> true()
          eq(0(),s(y)) -> false()
          eq(s(x),0()) -> false()
          eq(s(x),s(y)) -> eq(x,y)
          ge(0(),0()) -> true()
          ge(0(),s(x)) -> false()
          ge(s(x),0()) -> true()
          ge(s(x),s(y)) -> ge(x,y)
          h(cons(x,xs)) -> cons(x,h(xs))
          h(nil()) -> nil()
          if1(false(),x,y,xs) -> max(cons(y,xs))
          if1(true(),x,y,xs) -> max(cons(x,xs))
          if2(false(),x,y,xs) -> cons(y,del(x,xs))
          if2(true(),x,y,xs) -> xs
          max(cons(x,cons(y,xs))) -> if1(ge(x,y),x,y,xs)
          max(cons(x,nil())) -> x
          del#(x,cons(y,xs)) -> c_1(if2#(eq(x,y),x,y,xs),eq#(x,y))
          del#(x,nil()) -> c_2()
          eq#(0(),0()) -> c_3()
          eq#(0(),s(y)) -> c_4()
          eq#(s(x),0()) -> c_5()
          eq#(s(x),s(y)) -> c_6(eq#(x,y))
          ge#(0(),0()) -> c_7()
          ge#(0(),s(x)) -> c_8()
          ge#(s(x),0()) -> c_9()
          ge#(s(x),s(y)) -> c_10(ge#(x,y))
          h#(cons(x,xs)) -> c_11(h#(xs))
          h#(nil()) -> c_12()
          if1#(false(),x,y,xs) -> c_13(max#(cons(y,xs)))
          if1#(true(),x,y,xs) -> c_14(max#(cons(x,xs)))
          if2#(false(),x,y,xs) -> c_15(del#(x,xs))
          if2#(true(),x,y,xs) -> c_16()
          max#(cons(x,cons(y,xs))) -> c_17(if1#(ge(x,y),x,y,xs),ge#(x,y))
          max#(cons(x,nil())) -> c_18()
          max#(nil()) -> c_19()
          sort#(cons(x,xs)) -> c_20(max#(cons(x,xs))
                                   ,sort#(h(del(max(cons(x,xs)),cons(x,xs))))
                                   ,h#(del(max(cons(x,xs)),cons(x,xs)))
                                   ,del#(max(cons(x,xs)),cons(x,xs))
                                   ,max#(cons(x,xs)))
          sort#(nil()) -> c_21()
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            del#(x,cons(y,xs)) -> c_1(if2#(eq(x,y),x,y,xs),eq#(x,y))
            del#(x,nil()) -> c_2()
            eq#(0(),0()) -> c_3()
            eq#(0(),s(y)) -> c_4()
            eq#(s(x),0()) -> c_5()
            eq#(s(x),s(y)) -> c_6(eq#(x,y))
            ge#(0(),0()) -> c_7()
            ge#(0(),s(x)) -> c_8()
            ge#(s(x),0()) -> c_9()
            ge#(s(x),s(y)) -> c_10(ge#(x,y))
            h#(cons(x,xs)) -> c_11(h#(xs))
            h#(nil()) -> c_12()
            if1#(false(),x,y,xs) -> c_13(max#(cons(y,xs)))
            if1#(true(),x,y,xs) -> c_14(max#(cons(x,xs)))
            if2#(false(),x,y,xs) -> c_15(del#(x,xs))
            if2#(true(),x,y,xs) -> c_16()
            max#(cons(x,cons(y,xs))) -> c_17(if1#(ge(x,y),x,y,xs),ge#(x,y))
            max#(cons(x,nil())) -> c_18()
            max#(nil()) -> c_19()
            sort#(cons(x,xs)) -> c_20(max#(cons(x,xs))
                                     ,sort#(h(del(max(cons(x,xs)),cons(x,xs))))
                                     ,h#(del(max(cons(x,xs)),cons(x,xs)))
                                     ,del#(max(cons(x,xs)),cons(x,xs))
                                     ,max#(cons(x,xs)))
            sort#(nil()) -> c_21()
        - Weak TRS:
            del(x,cons(y,xs)) -> if2(eq(x,y),x,y,xs)
            del(x,nil()) -> nil()
            eq(0(),0()) -> true()
            eq(0(),s(y)) -> false()
            eq(s(x),0()) -> false()
            eq(s(x),s(y)) -> eq(x,y)
            ge(0(),0()) -> true()
            ge(0(),s(x)) -> false()
            ge(s(x),0()) -> true()
            ge(s(x),s(y)) -> ge(x,y)
            h(cons(x,xs)) -> cons(x,h(xs))
            h(nil()) -> nil()
            if1(false(),x,y,xs) -> max(cons(y,xs))
            if1(true(),x,y,xs) -> max(cons(x,xs))
            if2(false(),x,y,xs) -> cons(y,del(x,xs))
            if2(true(),x,y,xs) -> xs
            max(cons(x,cons(y,xs))) -> if1(ge(x,y),x,y,xs)
            max(cons(x,nil())) -> x
        - Signature:
            {del/2,eq/2,ge/2,h/1,if1/4,if2/4,max/1,sort/1,del#/2,eq#/2,ge#/2,h#/1,if1#/4,if2#/4,max#/1,sort#/1} / {0/0
            ,cons/2,false/0,nil/0,s/1,true/0,c_1/2,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/1,c_12/0
            ,c_13/1,c_14/1,c_15/1,c_16/0,c_17/2,c_18/0,c_19/0,c_20/5,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {del#,eq#,ge#,h#,if1#,if2#,max#,sort#} and constructors {0
            ,cons,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,3,4,5,7,8,9,12,16,18,19,21}
        by application of
          Pre({2,3,4,5,7,8,9,12,16,18,19,21}) = {1,6,10,11,13,14,15,17,20}.
        Here rules are labelled as follows:
          1: del#(x,cons(y,xs)) -> c_1(if2#(eq(x,y),x,y,xs),eq#(x,y))
          2: del#(x,nil()) -> c_2()
          3: eq#(0(),0()) -> c_3()
          4: eq#(0(),s(y)) -> c_4()
          5: eq#(s(x),0()) -> c_5()
          6: eq#(s(x),s(y)) -> c_6(eq#(x,y))
          7: ge#(0(),0()) -> c_7()
          8: ge#(0(),s(x)) -> c_8()
          9: ge#(s(x),0()) -> c_9()
          10: ge#(s(x),s(y)) -> c_10(ge#(x,y))
          11: h#(cons(x,xs)) -> c_11(h#(xs))
          12: h#(nil()) -> c_12()
          13: if1#(false(),x,y,xs) -> c_13(max#(cons(y,xs)))
          14: if1#(true(),x,y,xs) -> c_14(max#(cons(x,xs)))
          15: if2#(false(),x,y,xs) -> c_15(del#(x,xs))
          16: if2#(true(),x,y,xs) -> c_16()
          17: max#(cons(x,cons(y,xs))) -> c_17(if1#(ge(x,y),x,y,xs),ge#(x,y))
          18: max#(cons(x,nil())) -> c_18()
          19: max#(nil()) -> c_19()
          20: sort#(cons(x,xs)) -> c_20(max#(cons(x,xs))
                                       ,sort#(h(del(max(cons(x,xs)),cons(x,xs))))
                                       ,h#(del(max(cons(x,xs)),cons(x,xs)))
                                       ,del#(max(cons(x,xs)),cons(x,xs))
                                       ,max#(cons(x,xs)))
          21: sort#(nil()) -> c_21()
* Step 4: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            del#(x,cons(y,xs)) -> c_1(if2#(eq(x,y),x,y,xs),eq#(x,y))
            eq#(s(x),s(y)) -> c_6(eq#(x,y))
            ge#(s(x),s(y)) -> c_10(ge#(x,y))
            h#(cons(x,xs)) -> c_11(h#(xs))
            if1#(false(),x,y,xs) -> c_13(max#(cons(y,xs)))
            if1#(true(),x,y,xs) -> c_14(max#(cons(x,xs)))
            if2#(false(),x,y,xs) -> c_15(del#(x,xs))
            max#(cons(x,cons(y,xs))) -> c_17(if1#(ge(x,y),x,y,xs),ge#(x,y))
            sort#(cons(x,xs)) -> c_20(max#(cons(x,xs))
                                     ,sort#(h(del(max(cons(x,xs)),cons(x,xs))))
                                     ,h#(del(max(cons(x,xs)),cons(x,xs)))
                                     ,del#(max(cons(x,xs)),cons(x,xs))
                                     ,max#(cons(x,xs)))
        - Weak DPs:
            del#(x,nil()) -> c_2()
            eq#(0(),0()) -> c_3()
            eq#(0(),s(y)) -> c_4()
            eq#(s(x),0()) -> c_5()
            ge#(0(),0()) -> c_7()
            ge#(0(),s(x)) -> c_8()
            ge#(s(x),0()) -> c_9()
            h#(nil()) -> c_12()
            if2#(true(),x,y,xs) -> c_16()
            max#(cons(x,nil())) -> c_18()
            max#(nil()) -> c_19()
            sort#(nil()) -> c_21()
        - Weak TRS:
            del(x,cons(y,xs)) -> if2(eq(x,y),x,y,xs)
            del(x,nil()) -> nil()
            eq(0(),0()) -> true()
            eq(0(),s(y)) -> false()
            eq(s(x),0()) -> false()
            eq(s(x),s(y)) -> eq(x,y)
            ge(0(),0()) -> true()
            ge(0(),s(x)) -> false()
            ge(s(x),0()) -> true()
            ge(s(x),s(y)) -> ge(x,y)
            h(cons(x,xs)) -> cons(x,h(xs))
            h(nil()) -> nil()
            if1(false(),x,y,xs) -> max(cons(y,xs))
            if1(true(),x,y,xs) -> max(cons(x,xs))
            if2(false(),x,y,xs) -> cons(y,del(x,xs))
            if2(true(),x,y,xs) -> xs
            max(cons(x,cons(y,xs))) -> if1(ge(x,y),x,y,xs)
            max(cons(x,nil())) -> x
        - Signature:
            {del/2,eq/2,ge/2,h/1,if1/4,if2/4,max/1,sort/1,del#/2,eq#/2,ge#/2,h#/1,if1#/4,if2#/4,max#/1,sort#/1} / {0/0
            ,cons/2,false/0,nil/0,s/1,true/0,c_1/2,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/1,c_12/0
            ,c_13/1,c_14/1,c_15/1,c_16/0,c_17/2,c_18/0,c_19/0,c_20/5,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {del#,eq#,ge#,h#,if1#,if2#,max#,sort#} and constructors {0
            ,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:del#(x,cons(y,xs)) -> c_1(if2#(eq(x,y),x,y,xs),eq#(x,y))
             -->_1 if2#(false(),x,y,xs) -> c_15(del#(x,xs)):7
             -->_2 eq#(s(x),s(y)) -> c_6(eq#(x,y)):2
             -->_1 if2#(true(),x,y,xs) -> c_16():18
             -->_2 eq#(s(x),0()) -> c_5():13
             -->_2 eq#(0(),s(y)) -> c_4():12
             -->_2 eq#(0(),0()) -> c_3():11
          
          2:S:eq#(s(x),s(y)) -> c_6(eq#(x,y))
             -->_1 eq#(s(x),0()) -> c_5():13
             -->_1 eq#(0(),s(y)) -> c_4():12
             -->_1 eq#(0(),0()) -> c_3():11
             -->_1 eq#(s(x),s(y)) -> c_6(eq#(x,y)):2
          
          3:S:ge#(s(x),s(y)) -> c_10(ge#(x,y))
             -->_1 ge#(s(x),0()) -> c_9():16
             -->_1 ge#(0(),s(x)) -> c_8():15
             -->_1 ge#(0(),0()) -> c_7():14
             -->_1 ge#(s(x),s(y)) -> c_10(ge#(x,y)):3
          
          4:S:h#(cons(x,xs)) -> c_11(h#(xs))
             -->_1 h#(nil()) -> c_12():17
             -->_1 h#(cons(x,xs)) -> c_11(h#(xs)):4
          
          5:S:if1#(false(),x,y,xs) -> c_13(max#(cons(y,xs)))
             -->_1 max#(cons(x,cons(y,xs))) -> c_17(if1#(ge(x,y),x,y,xs),ge#(x,y)):8
             -->_1 max#(cons(x,nil())) -> c_18():19
          
          6:S:if1#(true(),x,y,xs) -> c_14(max#(cons(x,xs)))
             -->_1 max#(cons(x,cons(y,xs))) -> c_17(if1#(ge(x,y),x,y,xs),ge#(x,y)):8
             -->_1 max#(cons(x,nil())) -> c_18():19
          
          7:S:if2#(false(),x,y,xs) -> c_15(del#(x,xs))
             -->_1 del#(x,nil()) -> c_2():10
             -->_1 del#(x,cons(y,xs)) -> c_1(if2#(eq(x,y),x,y,xs),eq#(x,y)):1
          
          8:S:max#(cons(x,cons(y,xs))) -> c_17(if1#(ge(x,y),x,y,xs),ge#(x,y))
             -->_2 ge#(s(x),0()) -> c_9():16
             -->_2 ge#(0(),s(x)) -> c_8():15
             -->_2 ge#(0(),0()) -> c_7():14
             -->_1 if1#(true(),x,y,xs) -> c_14(max#(cons(x,xs))):6
             -->_1 if1#(false(),x,y,xs) -> c_13(max#(cons(y,xs))):5
             -->_2 ge#(s(x),s(y)) -> c_10(ge#(x,y)):3
          
          9:S:sort#(cons(x,xs)) -> c_20(max#(cons(x,xs))
                                       ,sort#(h(del(max(cons(x,xs)),cons(x,xs))))
                                       ,h#(del(max(cons(x,xs)),cons(x,xs)))
                                       ,del#(max(cons(x,xs)),cons(x,xs))
                                       ,max#(cons(x,xs)))
             -->_2 sort#(nil()) -> c_21():21
             -->_5 max#(cons(x,nil())) -> c_18():19
             -->_1 max#(cons(x,nil())) -> c_18():19
             -->_3 h#(nil()) -> c_12():17
             -->_2 sort#(cons(x,xs)) -> c_20(max#(cons(x,xs))
                                            ,sort#(h(del(max(cons(x,xs)),cons(x,xs))))
                                            ,h#(del(max(cons(x,xs)),cons(x,xs)))
                                            ,del#(max(cons(x,xs)),cons(x,xs))
                                            ,max#(cons(x,xs))):9
             -->_5 max#(cons(x,cons(y,xs))) -> c_17(if1#(ge(x,y),x,y,xs),ge#(x,y)):8
             -->_1 max#(cons(x,cons(y,xs))) -> c_17(if1#(ge(x,y),x,y,xs),ge#(x,y)):8
             -->_3 h#(cons(x,xs)) -> c_11(h#(xs)):4
             -->_4 del#(x,cons(y,xs)) -> c_1(if2#(eq(x,y),x,y,xs),eq#(x,y)):1
          
          10:W:del#(x,nil()) -> c_2()
             
          
          11:W:eq#(0(),0()) -> c_3()
             
          
          12:W:eq#(0(),s(y)) -> c_4()
             
          
          13:W:eq#(s(x),0()) -> c_5()
             
          
          14:W:ge#(0(),0()) -> c_7()
             
          
          15:W:ge#(0(),s(x)) -> c_8()
             
          
          16:W:ge#(s(x),0()) -> c_9()
             
          
          17:W:h#(nil()) -> c_12()
             
          
          18:W:if2#(true(),x,y,xs) -> c_16()
             
          
          19:W:max#(cons(x,nil())) -> c_18()
             
          
          20:W:max#(nil()) -> c_19()
             
          
          21:W:sort#(nil()) -> c_21()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          20: max#(nil()) -> c_19()
          21: sort#(nil()) -> c_21()
          19: max#(cons(x,nil())) -> c_18()
          17: h#(nil()) -> c_12()
          14: ge#(0(),0()) -> c_7()
          15: ge#(0(),s(x)) -> c_8()
          16: ge#(s(x),0()) -> c_9()
          18: if2#(true(),x,y,xs) -> c_16()
          11: eq#(0(),0()) -> c_3()
          12: eq#(0(),s(y)) -> c_4()
          13: eq#(s(x),0()) -> c_5()
          10: del#(x,nil()) -> c_2()
* Step 5: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          del#(x,cons(y,xs)) -> c_1(if2#(eq(x,y),x,y,xs),eq#(x,y))
          eq#(s(x),s(y)) -> c_6(eq#(x,y))
          ge#(s(x),s(y)) -> c_10(ge#(x,y))
          h#(cons(x,xs)) -> c_11(h#(xs))
          if1#(false(),x,y,xs) -> c_13(max#(cons(y,xs)))
          if1#(true(),x,y,xs) -> c_14(max#(cons(x,xs)))
          if2#(false(),x,y,xs) -> c_15(del#(x,xs))
          max#(cons(x,cons(y,xs))) -> c_17(if1#(ge(x,y),x,y,xs),ge#(x,y))
          sort#(cons(x,xs)) -> c_20(max#(cons(x,xs))
                                   ,sort#(h(del(max(cons(x,xs)),cons(x,xs))))
                                   ,h#(del(max(cons(x,xs)),cons(x,xs)))
                                   ,del#(max(cons(x,xs)),cons(x,xs))
                                   ,max#(cons(x,xs)))
      - Weak TRS:
          del(x,cons(y,xs)) -> if2(eq(x,y),x,y,xs)
          del(x,nil()) -> nil()
          eq(0(),0()) -> true()
          eq(0(),s(y)) -> false()
          eq(s(x),0()) -> false()
          eq(s(x),s(y)) -> eq(x,y)
          ge(0(),0()) -> true()
          ge(0(),s(x)) -> false()
          ge(s(x),0()) -> true()
          ge(s(x),s(y)) -> ge(x,y)
          h(cons(x,xs)) -> cons(x,h(xs))
          h(nil()) -> nil()
          if1(false(),x,y,xs) -> max(cons(y,xs))
          if1(true(),x,y,xs) -> max(cons(x,xs))
          if2(false(),x,y,xs) -> cons(y,del(x,xs))
          if2(true(),x,y,xs) -> xs
          max(cons(x,cons(y,xs))) -> if1(ge(x,y),x,y,xs)
          max(cons(x,nil())) -> x
      - Signature:
          {del/2,eq/2,ge/2,h/1,if1/4,if2/4,max/1,sort/1,del#/2,eq#/2,ge#/2,h#/1,if1#/4,if2#/4,max#/1,sort#/1} / {0/0
          ,cons/2,false/0,nil/0,s/1,true/0,c_1/2,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/1,c_12/0
          ,c_13/1,c_14/1,c_15/1,c_16/0,c_17/2,c_18/0,c_19/0,c_20/5,c_21/0}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {del#,eq#,ge#,h#,if1#,if2#,max#,sort#} and constructors {0
          ,cons,false,nil,s,true}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE