MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            eq(0(),0()) -> true()
            eq(0(),s(y)) -> false()
            eq(s(x),0()) -> false()
            eq(s(x),s(y)) -> eq(x,y)
            if1(false(),x,y,xs) -> min(cons(y,xs))
            if1(true(),x,y,xs) -> min(cons(x,xs))
            if2(false(),x,y,xs) -> cons(y,rm(x,xs))
            if2(true(),x,y,xs) -> rm(x,xs)
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            min(cons(x,cons(y,xs))) -> if1(le(x,y),x,y,xs)
            min(cons(x,nil())) -> x
            min(nil()) -> 0()
            minsort(cons(x,xs)) -> cons(min(cons(x,xs)),minsort(rm(min(cons(x,xs)),cons(x,xs))))
            minsort(nil()) -> nil()
            rm(x,cons(y,xs)) -> if2(eq(x,y),x,y,xs)
            rm(x,nil()) -> nil()
        - Signature:
            {eq/2,if1/4,if2/4,le/2,min/1,minsort/1,rm/2} / {0/0,cons/2,false/0,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq,if1,if2,le,min,minsort,rm} and constructors {0,cons
            ,false,nil,s,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          eq#(0(),0()) -> c_1()
          eq#(0(),s(y)) -> c_2()
          eq#(s(x),0()) -> c_3()
          eq#(s(x),s(y)) -> c_4(eq#(x,y))
          if1#(false(),x,y,xs) -> c_5(min#(cons(y,xs)))
          if1#(true(),x,y,xs) -> c_6(min#(cons(x,xs)))
          if2#(false(),x,y,xs) -> c_7(rm#(x,xs))
          if2#(true(),x,y,xs) -> c_8(rm#(x,xs))
          le#(0(),y) -> c_9()
          le#(s(x),0()) -> c_10()
          le#(s(x),s(y)) -> c_11(le#(x,y))
          min#(cons(x,cons(y,xs))) -> c_12(if1#(le(x,y),x,y,xs),le#(x,y))
          min#(cons(x,nil())) -> c_13()
          min#(nil()) -> c_14()
          minsort#(cons(x,xs)) -> c_15(min#(cons(x,xs))
                                      ,minsort#(rm(min(cons(x,xs)),cons(x,xs)))
                                      ,rm#(min(cons(x,xs)),cons(x,xs))
                                      ,min#(cons(x,xs)))
          minsort#(nil()) -> c_16()
          rm#(x,cons(y,xs)) -> c_17(if2#(eq(x,y),x,y,xs),eq#(x,y))
          rm#(x,nil()) -> c_18()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            eq#(0(),0()) -> c_1()
            eq#(0(),s(y)) -> c_2()
            eq#(s(x),0()) -> c_3()
            eq#(s(x),s(y)) -> c_4(eq#(x,y))
            if1#(false(),x,y,xs) -> c_5(min#(cons(y,xs)))
            if1#(true(),x,y,xs) -> c_6(min#(cons(x,xs)))
            if2#(false(),x,y,xs) -> c_7(rm#(x,xs))
            if2#(true(),x,y,xs) -> c_8(rm#(x,xs))
            le#(0(),y) -> c_9()
            le#(s(x),0()) -> c_10()
            le#(s(x),s(y)) -> c_11(le#(x,y))
            min#(cons(x,cons(y,xs))) -> c_12(if1#(le(x,y),x,y,xs),le#(x,y))
            min#(cons(x,nil())) -> c_13()
            min#(nil()) -> c_14()
            minsort#(cons(x,xs)) -> c_15(min#(cons(x,xs))
                                        ,minsort#(rm(min(cons(x,xs)),cons(x,xs)))
                                        ,rm#(min(cons(x,xs)),cons(x,xs))
                                        ,min#(cons(x,xs)))
            minsort#(nil()) -> c_16()
            rm#(x,cons(y,xs)) -> c_17(if2#(eq(x,y),x,y,xs),eq#(x,y))
            rm#(x,nil()) -> c_18()
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(y)) -> false()
            eq(s(x),0()) -> false()
            eq(s(x),s(y)) -> eq(x,y)
            if1(false(),x,y,xs) -> min(cons(y,xs))
            if1(true(),x,y,xs) -> min(cons(x,xs))
            if2(false(),x,y,xs) -> cons(y,rm(x,xs))
            if2(true(),x,y,xs) -> rm(x,xs)
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            min(cons(x,cons(y,xs))) -> if1(le(x,y),x,y,xs)
            min(cons(x,nil())) -> x
            min(nil()) -> 0()
            minsort(cons(x,xs)) -> cons(min(cons(x,xs)),minsort(rm(min(cons(x,xs)),cons(x,xs))))
            minsort(nil()) -> nil()
            rm(x,cons(y,xs)) -> if2(eq(x,y),x,y,xs)
            rm(x,nil()) -> nil()
        - Signature:
            {eq/2,if1/4,if2/4,le/2,min/1,minsort/1,rm/2,eq#/2,if1#/4,if2#/4,le#/2,min#/1,minsort#/1,rm#/2} / {0/0,cons/2
            ,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/0,c_10/0,c_11/1,c_12/2,c_13/0
            ,c_14/0,c_15/4,c_16/0,c_17/2,c_18/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,if1#,if2#,le#,min#,minsort#,rm#} and constructors {0
            ,cons,false,nil,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          eq(0(),0()) -> true()
          eq(0(),s(y)) -> false()
          eq(s(x),0()) -> false()
          eq(s(x),s(y)) -> eq(x,y)
          if1(false(),x,y,xs) -> min(cons(y,xs))
          if1(true(),x,y,xs) -> min(cons(x,xs))
          if2(false(),x,y,xs) -> cons(y,rm(x,xs))
          if2(true(),x,y,xs) -> rm(x,xs)
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          min(cons(x,cons(y,xs))) -> if1(le(x,y),x,y,xs)
          min(cons(x,nil())) -> x
          rm(x,cons(y,xs)) -> if2(eq(x,y),x,y,xs)
          rm(x,nil()) -> nil()
          eq#(0(),0()) -> c_1()
          eq#(0(),s(y)) -> c_2()
          eq#(s(x),0()) -> c_3()
          eq#(s(x),s(y)) -> c_4(eq#(x,y))
          if1#(false(),x,y,xs) -> c_5(min#(cons(y,xs)))
          if1#(true(),x,y,xs) -> c_6(min#(cons(x,xs)))
          if2#(false(),x,y,xs) -> c_7(rm#(x,xs))
          if2#(true(),x,y,xs) -> c_8(rm#(x,xs))
          le#(0(),y) -> c_9()
          le#(s(x),0()) -> c_10()
          le#(s(x),s(y)) -> c_11(le#(x,y))
          min#(cons(x,cons(y,xs))) -> c_12(if1#(le(x,y),x,y,xs),le#(x,y))
          min#(cons(x,nil())) -> c_13()
          min#(nil()) -> c_14()
          minsort#(cons(x,xs)) -> c_15(min#(cons(x,xs))
                                      ,minsort#(rm(min(cons(x,xs)),cons(x,xs)))
                                      ,rm#(min(cons(x,xs)),cons(x,xs))
                                      ,min#(cons(x,xs)))
          minsort#(nil()) -> c_16()
          rm#(x,cons(y,xs)) -> c_17(if2#(eq(x,y),x,y,xs),eq#(x,y))
          rm#(x,nil()) -> c_18()
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            eq#(0(),0()) -> c_1()
            eq#(0(),s(y)) -> c_2()
            eq#(s(x),0()) -> c_3()
            eq#(s(x),s(y)) -> c_4(eq#(x,y))
            if1#(false(),x,y,xs) -> c_5(min#(cons(y,xs)))
            if1#(true(),x,y,xs) -> c_6(min#(cons(x,xs)))
            if2#(false(),x,y,xs) -> c_7(rm#(x,xs))
            if2#(true(),x,y,xs) -> c_8(rm#(x,xs))
            le#(0(),y) -> c_9()
            le#(s(x),0()) -> c_10()
            le#(s(x),s(y)) -> c_11(le#(x,y))
            min#(cons(x,cons(y,xs))) -> c_12(if1#(le(x,y),x,y,xs),le#(x,y))
            min#(cons(x,nil())) -> c_13()
            min#(nil()) -> c_14()
            minsort#(cons(x,xs)) -> c_15(min#(cons(x,xs))
                                        ,minsort#(rm(min(cons(x,xs)),cons(x,xs)))
                                        ,rm#(min(cons(x,xs)),cons(x,xs))
                                        ,min#(cons(x,xs)))
            minsort#(nil()) -> c_16()
            rm#(x,cons(y,xs)) -> c_17(if2#(eq(x,y),x,y,xs),eq#(x,y))
            rm#(x,nil()) -> c_18()
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(y)) -> false()
            eq(s(x),0()) -> false()
            eq(s(x),s(y)) -> eq(x,y)
            if1(false(),x,y,xs) -> min(cons(y,xs))
            if1(true(),x,y,xs) -> min(cons(x,xs))
            if2(false(),x,y,xs) -> cons(y,rm(x,xs))
            if2(true(),x,y,xs) -> rm(x,xs)
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            min(cons(x,cons(y,xs))) -> if1(le(x,y),x,y,xs)
            min(cons(x,nil())) -> x
            rm(x,cons(y,xs)) -> if2(eq(x,y),x,y,xs)
            rm(x,nil()) -> nil()
        - Signature:
            {eq/2,if1/4,if2/4,le/2,min/1,minsort/1,rm/2,eq#/2,if1#/4,if2#/4,le#/2,min#/1,minsort#/1,rm#/2} / {0/0,cons/2
            ,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/0,c_10/0,c_11/1,c_12/2,c_13/0
            ,c_14/0,c_15/4,c_16/0,c_17/2,c_18/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,if1#,if2#,le#,min#,minsort#,rm#} and constructors {0
            ,cons,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,3,9,10,13,14,16,18}
        by application of
          Pre({1,2,3,9,10,13,14,16,18}) = {4,5,6,7,8,11,12,15,17}.
        Here rules are labelled as follows:
          1: eq#(0(),0()) -> c_1()
          2: eq#(0(),s(y)) -> c_2()
          3: eq#(s(x),0()) -> c_3()
          4: eq#(s(x),s(y)) -> c_4(eq#(x,y))
          5: if1#(false(),x,y,xs) -> c_5(min#(cons(y,xs)))
          6: if1#(true(),x,y,xs) -> c_6(min#(cons(x,xs)))
          7: if2#(false(),x,y,xs) -> c_7(rm#(x,xs))
          8: if2#(true(),x,y,xs) -> c_8(rm#(x,xs))
          9: le#(0(),y) -> c_9()
          10: le#(s(x),0()) -> c_10()
          11: le#(s(x),s(y)) -> c_11(le#(x,y))
          12: min#(cons(x,cons(y,xs))) -> c_12(if1#(le(x,y),x,y,xs),le#(x,y))
          13: min#(cons(x,nil())) -> c_13()
          14: min#(nil()) -> c_14()
          15: minsort#(cons(x,xs)) -> c_15(min#(cons(x,xs))
                                          ,minsort#(rm(min(cons(x,xs)),cons(x,xs)))
                                          ,rm#(min(cons(x,xs)),cons(x,xs))
                                          ,min#(cons(x,xs)))
          16: minsort#(nil()) -> c_16()
          17: rm#(x,cons(y,xs)) -> c_17(if2#(eq(x,y),x,y,xs),eq#(x,y))
          18: rm#(x,nil()) -> c_18()
* Step 4: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            eq#(s(x),s(y)) -> c_4(eq#(x,y))
            if1#(false(),x,y,xs) -> c_5(min#(cons(y,xs)))
            if1#(true(),x,y,xs) -> c_6(min#(cons(x,xs)))
            if2#(false(),x,y,xs) -> c_7(rm#(x,xs))
            if2#(true(),x,y,xs) -> c_8(rm#(x,xs))
            le#(s(x),s(y)) -> c_11(le#(x,y))
            min#(cons(x,cons(y,xs))) -> c_12(if1#(le(x,y),x,y,xs),le#(x,y))
            minsort#(cons(x,xs)) -> c_15(min#(cons(x,xs))
                                        ,minsort#(rm(min(cons(x,xs)),cons(x,xs)))
                                        ,rm#(min(cons(x,xs)),cons(x,xs))
                                        ,min#(cons(x,xs)))
            rm#(x,cons(y,xs)) -> c_17(if2#(eq(x,y),x,y,xs),eq#(x,y))
        - Weak DPs:
            eq#(0(),0()) -> c_1()
            eq#(0(),s(y)) -> c_2()
            eq#(s(x),0()) -> c_3()
            le#(0(),y) -> c_9()
            le#(s(x),0()) -> c_10()
            min#(cons(x,nil())) -> c_13()
            min#(nil()) -> c_14()
            minsort#(nil()) -> c_16()
            rm#(x,nil()) -> c_18()
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(y)) -> false()
            eq(s(x),0()) -> false()
            eq(s(x),s(y)) -> eq(x,y)
            if1(false(),x,y,xs) -> min(cons(y,xs))
            if1(true(),x,y,xs) -> min(cons(x,xs))
            if2(false(),x,y,xs) -> cons(y,rm(x,xs))
            if2(true(),x,y,xs) -> rm(x,xs)
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            min(cons(x,cons(y,xs))) -> if1(le(x,y),x,y,xs)
            min(cons(x,nil())) -> x
            rm(x,cons(y,xs)) -> if2(eq(x,y),x,y,xs)
            rm(x,nil()) -> nil()
        - Signature:
            {eq/2,if1/4,if2/4,le/2,min/1,minsort/1,rm/2,eq#/2,if1#/4,if2#/4,le#/2,min#/1,minsort#/1,rm#/2} / {0/0,cons/2
            ,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/0,c_10/0,c_11/1,c_12/2,c_13/0
            ,c_14/0,c_15/4,c_16/0,c_17/2,c_18/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,if1#,if2#,le#,min#,minsort#,rm#} and constructors {0
            ,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:eq#(s(x),s(y)) -> c_4(eq#(x,y))
             -->_1 eq#(s(x),0()) -> c_3():12
             -->_1 eq#(0(),s(y)) -> c_2():11
             -->_1 eq#(0(),0()) -> c_1():10
             -->_1 eq#(s(x),s(y)) -> c_4(eq#(x,y)):1
          
          2:S:if1#(false(),x,y,xs) -> c_5(min#(cons(y,xs)))
             -->_1 min#(cons(x,cons(y,xs))) -> c_12(if1#(le(x,y),x,y,xs),le#(x,y)):7
             -->_1 min#(cons(x,nil())) -> c_13():15
          
          3:S:if1#(true(),x,y,xs) -> c_6(min#(cons(x,xs)))
             -->_1 min#(cons(x,cons(y,xs))) -> c_12(if1#(le(x,y),x,y,xs),le#(x,y)):7
             -->_1 min#(cons(x,nil())) -> c_13():15
          
          4:S:if2#(false(),x,y,xs) -> c_7(rm#(x,xs))
             -->_1 rm#(x,cons(y,xs)) -> c_17(if2#(eq(x,y),x,y,xs),eq#(x,y)):9
             -->_1 rm#(x,nil()) -> c_18():18
          
          5:S:if2#(true(),x,y,xs) -> c_8(rm#(x,xs))
             -->_1 rm#(x,cons(y,xs)) -> c_17(if2#(eq(x,y),x,y,xs),eq#(x,y)):9
             -->_1 rm#(x,nil()) -> c_18():18
          
          6:S:le#(s(x),s(y)) -> c_11(le#(x,y))
             -->_1 le#(s(x),0()) -> c_10():14
             -->_1 le#(0(),y) -> c_9():13
             -->_1 le#(s(x),s(y)) -> c_11(le#(x,y)):6
          
          7:S:min#(cons(x,cons(y,xs))) -> c_12(if1#(le(x,y),x,y,xs),le#(x,y))
             -->_2 le#(s(x),0()) -> c_10():14
             -->_2 le#(0(),y) -> c_9():13
             -->_2 le#(s(x),s(y)) -> c_11(le#(x,y)):6
             -->_1 if1#(true(),x,y,xs) -> c_6(min#(cons(x,xs))):3
             -->_1 if1#(false(),x,y,xs) -> c_5(min#(cons(y,xs))):2
          
          8:S:minsort#(cons(x,xs)) -> c_15(min#(cons(x,xs))
                                          ,minsort#(rm(min(cons(x,xs)),cons(x,xs)))
                                          ,rm#(min(cons(x,xs)),cons(x,xs))
                                          ,min#(cons(x,xs)))
             -->_3 rm#(x,cons(y,xs)) -> c_17(if2#(eq(x,y),x,y,xs),eq#(x,y)):9
             -->_2 minsort#(nil()) -> c_16():17
             -->_4 min#(cons(x,nil())) -> c_13():15
             -->_1 min#(cons(x,nil())) -> c_13():15
             -->_2 minsort#(cons(x,xs)) -> c_15(min#(cons(x,xs))
                                               ,minsort#(rm(min(cons(x,xs)),cons(x,xs)))
                                               ,rm#(min(cons(x,xs)),cons(x,xs))
                                               ,min#(cons(x,xs))):8
             -->_4 min#(cons(x,cons(y,xs))) -> c_12(if1#(le(x,y),x,y,xs),le#(x,y)):7
             -->_1 min#(cons(x,cons(y,xs))) -> c_12(if1#(le(x,y),x,y,xs),le#(x,y)):7
          
          9:S:rm#(x,cons(y,xs)) -> c_17(if2#(eq(x,y),x,y,xs),eq#(x,y))
             -->_2 eq#(s(x),0()) -> c_3():12
             -->_2 eq#(0(),s(y)) -> c_2():11
             -->_2 eq#(0(),0()) -> c_1():10
             -->_1 if2#(true(),x,y,xs) -> c_8(rm#(x,xs)):5
             -->_1 if2#(false(),x,y,xs) -> c_7(rm#(x,xs)):4
             -->_2 eq#(s(x),s(y)) -> c_4(eq#(x,y)):1
          
          10:W:eq#(0(),0()) -> c_1()
             
          
          11:W:eq#(0(),s(y)) -> c_2()
             
          
          12:W:eq#(s(x),0()) -> c_3()
             
          
          13:W:le#(0(),y) -> c_9()
             
          
          14:W:le#(s(x),0()) -> c_10()
             
          
          15:W:min#(cons(x,nil())) -> c_13()
             
          
          16:W:min#(nil()) -> c_14()
             
          
          17:W:minsort#(nil()) -> c_16()
             
          
          18:W:rm#(x,nil()) -> c_18()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          16: min#(nil()) -> c_14()
          17: minsort#(nil()) -> c_16()
          18: rm#(x,nil()) -> c_18()
          15: min#(cons(x,nil())) -> c_13()
          13: le#(0(),y) -> c_9()
          14: le#(s(x),0()) -> c_10()
          10: eq#(0(),0()) -> c_1()
          11: eq#(0(),s(y)) -> c_2()
          12: eq#(s(x),0()) -> c_3()
* Step 5: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          eq#(s(x),s(y)) -> c_4(eq#(x,y))
          if1#(false(),x,y,xs) -> c_5(min#(cons(y,xs)))
          if1#(true(),x,y,xs) -> c_6(min#(cons(x,xs)))
          if2#(false(),x,y,xs) -> c_7(rm#(x,xs))
          if2#(true(),x,y,xs) -> c_8(rm#(x,xs))
          le#(s(x),s(y)) -> c_11(le#(x,y))
          min#(cons(x,cons(y,xs))) -> c_12(if1#(le(x,y),x,y,xs),le#(x,y))
          minsort#(cons(x,xs)) -> c_15(min#(cons(x,xs))
                                      ,minsort#(rm(min(cons(x,xs)),cons(x,xs)))
                                      ,rm#(min(cons(x,xs)),cons(x,xs))
                                      ,min#(cons(x,xs)))
          rm#(x,cons(y,xs)) -> c_17(if2#(eq(x,y),x,y,xs),eq#(x,y))
      - Weak TRS:
          eq(0(),0()) -> true()
          eq(0(),s(y)) -> false()
          eq(s(x),0()) -> false()
          eq(s(x),s(y)) -> eq(x,y)
          if1(false(),x,y,xs) -> min(cons(y,xs))
          if1(true(),x,y,xs) -> min(cons(x,xs))
          if2(false(),x,y,xs) -> cons(y,rm(x,xs))
          if2(true(),x,y,xs) -> rm(x,xs)
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          min(cons(x,cons(y,xs))) -> if1(le(x,y),x,y,xs)
          min(cons(x,nil())) -> x
          rm(x,cons(y,xs)) -> if2(eq(x,y),x,y,xs)
          rm(x,nil()) -> nil()
      - Signature:
          {eq/2,if1/4,if2/4,le/2,min/1,minsort/1,rm/2,eq#/2,if1#/4,if2#/4,le#/2,min#/1,minsort#/1,rm#/2} / {0/0,cons/2
          ,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/0,c_10/0,c_11/1,c_12/2,c_13/0
          ,c_14/0,c_15/4,c_16/0,c_17/2,c_18/0}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {eq#,if1#,if2#,le#,min#,minsort#,rm#} and constructors {0
          ,cons,false,nil,s,true}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE