MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            cond(true(),x,y) -> cond(gr(x,y),p(x),y)
            gr(0(),x) -> false()
            gr(s(x),0()) -> true()
            gr(s(x),s(y)) -> gr(x,y)
            p(0()) -> 0()
            p(s(x)) -> x
        - Signature:
            {cond/3,gr/2,p/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond,gr,p} and constructors {0,false,s,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          cond#(true(),x,y) -> c_1(cond#(gr(x,y),p(x),y),gr#(x,y),p#(x))
          gr#(0(),x) -> c_2()
          gr#(s(x),0()) -> c_3()
          gr#(s(x),s(y)) -> c_4(gr#(x,y))
          p#(0()) -> c_5()
          p#(s(x)) -> c_6()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            cond#(true(),x,y) -> c_1(cond#(gr(x,y),p(x),y),gr#(x,y),p#(x))
            gr#(0(),x) -> c_2()
            gr#(s(x),0()) -> c_3()
            gr#(s(x),s(y)) -> c_4(gr#(x,y))
            p#(0()) -> c_5()
            p#(s(x)) -> c_6()
        - Weak TRS:
            cond(true(),x,y) -> cond(gr(x,y),p(x),y)
            gr(0(),x) -> false()
            gr(s(x),0()) -> true()
            gr(s(x),s(y)) -> gr(x,y)
            p(0()) -> 0()
            p(s(x)) -> x
        - Signature:
            {cond/3,gr/2,p/1,cond#/3,gr#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/3,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond#,gr#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          gr(0(),x) -> false()
          gr(s(x),0()) -> true()
          gr(s(x),s(y)) -> gr(x,y)
          p(0()) -> 0()
          p(s(x)) -> x
          cond#(true(),x,y) -> c_1(cond#(gr(x,y),p(x),y),gr#(x,y),p#(x))
          gr#(0(),x) -> c_2()
          gr#(s(x),0()) -> c_3()
          gr#(s(x),s(y)) -> c_4(gr#(x,y))
          p#(0()) -> c_5()
          p#(s(x)) -> c_6()
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            cond#(true(),x,y) -> c_1(cond#(gr(x,y),p(x),y),gr#(x,y),p#(x))
            gr#(0(),x) -> c_2()
            gr#(s(x),0()) -> c_3()
            gr#(s(x),s(y)) -> c_4(gr#(x,y))
            p#(0()) -> c_5()
            p#(s(x)) -> c_6()
        - Weak TRS:
            gr(0(),x) -> false()
            gr(s(x),0()) -> true()
            gr(s(x),s(y)) -> gr(x,y)
            p(0()) -> 0()
            p(s(x)) -> x
        - Signature:
            {cond/3,gr/2,p/1,cond#/3,gr#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/3,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond#,gr#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,3,5,6}
        by application of
          Pre({2,3,5,6}) = {1,4}.
        Here rules are labelled as follows:
          1: cond#(true(),x,y) -> c_1(cond#(gr(x,y),p(x),y),gr#(x,y),p#(x))
          2: gr#(0(),x) -> c_2()
          3: gr#(s(x),0()) -> c_3()
          4: gr#(s(x),s(y)) -> c_4(gr#(x,y))
          5: p#(0()) -> c_5()
          6: p#(s(x)) -> c_6()
* Step 4: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            cond#(true(),x,y) -> c_1(cond#(gr(x,y),p(x),y),gr#(x,y),p#(x))
            gr#(s(x),s(y)) -> c_4(gr#(x,y))
        - Weak DPs:
            gr#(0(),x) -> c_2()
            gr#(s(x),0()) -> c_3()
            p#(0()) -> c_5()
            p#(s(x)) -> c_6()
        - Weak TRS:
            gr(0(),x) -> false()
            gr(s(x),0()) -> true()
            gr(s(x),s(y)) -> gr(x,y)
            p(0()) -> 0()
            p(s(x)) -> x
        - Signature:
            {cond/3,gr/2,p/1,cond#/3,gr#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/3,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond#,gr#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:cond#(true(),x,y) -> c_1(cond#(gr(x,y),p(x),y),gr#(x,y),p#(x))
             -->_2 gr#(s(x),s(y)) -> c_4(gr#(x,y)):2
             -->_3 p#(s(x)) -> c_6():6
             -->_3 p#(0()) -> c_5():5
             -->_2 gr#(s(x),0()) -> c_3():4
             -->_2 gr#(0(),x) -> c_2():3
             -->_1 cond#(true(),x,y) -> c_1(cond#(gr(x,y),p(x),y),gr#(x,y),p#(x)):1
          
          2:S:gr#(s(x),s(y)) -> c_4(gr#(x,y))
             -->_1 gr#(s(x),0()) -> c_3():4
             -->_1 gr#(0(),x) -> c_2():3
             -->_1 gr#(s(x),s(y)) -> c_4(gr#(x,y)):2
          
          3:W:gr#(0(),x) -> c_2()
             
          
          4:W:gr#(s(x),0()) -> c_3()
             
          
          5:W:p#(0()) -> c_5()
             
          
          6:W:p#(s(x)) -> c_6()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: p#(0()) -> c_5()
          6: p#(s(x)) -> c_6()
          3: gr#(0(),x) -> c_2()
          4: gr#(s(x),0()) -> c_3()
* Step 5: SimplifyRHS MAYBE
    + Considered Problem:
        - Strict DPs:
            cond#(true(),x,y) -> c_1(cond#(gr(x,y),p(x),y),gr#(x,y),p#(x))
            gr#(s(x),s(y)) -> c_4(gr#(x,y))
        - Weak TRS:
            gr(0(),x) -> false()
            gr(s(x),0()) -> true()
            gr(s(x),s(y)) -> gr(x,y)
            p(0()) -> 0()
            p(s(x)) -> x
        - Signature:
            {cond/3,gr/2,p/1,cond#/3,gr#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/3,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond#,gr#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:cond#(true(),x,y) -> c_1(cond#(gr(x,y),p(x),y),gr#(x,y),p#(x))
             -->_2 gr#(s(x),s(y)) -> c_4(gr#(x,y)):2
             -->_1 cond#(true(),x,y) -> c_1(cond#(gr(x,y),p(x),y),gr#(x,y),p#(x)):1
          
          2:S:gr#(s(x),s(y)) -> c_4(gr#(x,y))
             -->_1 gr#(s(x),s(y)) -> c_4(gr#(x,y)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          cond#(true(),x,y) -> c_1(cond#(gr(x,y),p(x),y),gr#(x,y))
* Step 6: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          cond#(true(),x,y) -> c_1(cond#(gr(x,y),p(x),y),gr#(x,y))
          gr#(s(x),s(y)) -> c_4(gr#(x,y))
      - Weak TRS:
          gr(0(),x) -> false()
          gr(s(x),0()) -> true()
          gr(s(x),s(y)) -> gr(x,y)
          p(0()) -> 0()
          p(s(x)) -> x
      - Signature:
          {cond/3,gr/2,p/1,cond#/3,gr#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/2,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {cond#,gr#,p#} and constructors {0,false,s,true}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE