MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: cond(false(),x,y) -> 0() cond(true(),x,y) -> s(minus(x,s(y))) ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) minus(x,y) -> cond(ge(x,s(y)),x,y) - Signature: {cond/3,ge/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond,ge,minus} and constructors {0,false,s,true} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs cond#(false(),x,y) -> c_1() cond#(true(),x,y) -> c_2(minus#(x,s(y))) ge#(u,0()) -> c_3() ge#(0(),s(v)) -> c_4() ge#(s(u),s(v)) -> c_5(ge#(u,v)) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: cond#(false(),x,y) -> c_1() cond#(true(),x,y) -> c_2(minus#(x,s(y))) ge#(u,0()) -> c_3() ge#(0(),s(v)) -> c_4() ge#(s(u),s(v)) -> c_5(ge#(u,v)) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) - Weak TRS: cond(false(),x,y) -> 0() cond(true(),x,y) -> s(minus(x,s(y))) ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) minus(x,y) -> cond(ge(x,s(y)),x,y) - Signature: {cond/3,ge/2,minus/2,cond#/3,ge#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {cond#,ge#,minus#} and constructors {0,false,s,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) cond#(false(),x,y) -> c_1() cond#(true(),x,y) -> c_2(minus#(x,s(y))) ge#(u,0()) -> c_3() ge#(0(),s(v)) -> c_4() ge#(s(u),s(v)) -> c_5(ge#(u,v)) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: cond#(false(),x,y) -> c_1() cond#(true(),x,y) -> c_2(minus#(x,s(y))) ge#(u,0()) -> c_3() ge#(0(),s(v)) -> c_4() ge#(s(u),s(v)) -> c_5(ge#(u,v)) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) - Weak TRS: ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) - Signature: {cond/3,ge/2,minus/2,cond#/3,ge#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {cond#,ge#,minus#} and constructors {0,false,s,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,4} by application of Pre({1,3,4}) = {5,6}. Here rules are labelled as follows: 1: cond#(false(),x,y) -> c_1() 2: cond#(true(),x,y) -> c_2(minus#(x,s(y))) 3: ge#(u,0()) -> c_3() 4: ge#(0(),s(v)) -> c_4() 5: ge#(s(u),s(v)) -> c_5(ge#(u,v)) 6: minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: cond#(true(),x,y) -> c_2(minus#(x,s(y))) ge#(s(u),s(v)) -> c_5(ge#(u,v)) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) - Weak DPs: cond#(false(),x,y) -> c_1() ge#(u,0()) -> c_3() ge#(0(),s(v)) -> c_4() - Weak TRS: ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) - Signature: {cond/3,ge/2,minus/2,cond#/3,ge#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {cond#,ge#,minus#} and constructors {0,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:cond#(true(),x,y) -> c_2(minus#(x,s(y))) -->_1 minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))):3 2:S:ge#(s(u),s(v)) -> c_5(ge#(u,v)) -->_1 ge#(0(),s(v)) -> c_4():6 -->_1 ge#(u,0()) -> c_3():5 -->_1 ge#(s(u),s(v)) -> c_5(ge#(u,v)):2 3:S:minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) -->_2 ge#(0(),s(v)) -> c_4():6 -->_1 cond#(false(),x,y) -> c_1():4 -->_2 ge#(s(u),s(v)) -> c_5(ge#(u,v)):2 -->_1 cond#(true(),x,y) -> c_2(minus#(x,s(y))):1 4:W:cond#(false(),x,y) -> c_1() 5:W:ge#(u,0()) -> c_3() 6:W:ge#(0(),s(v)) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: ge#(u,0()) -> c_3() 4: cond#(false(),x,y) -> c_1() 6: ge#(0(),s(v)) -> c_4() * Step 5: WeightGap MAYBE + Considered Problem: - Strict DPs: cond#(true(),x,y) -> c_2(minus#(x,s(y))) ge#(s(u),s(v)) -> c_5(ge#(u,v)) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) - Weak TRS: ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) - Signature: {cond/3,ge/2,minus/2,cond#/3,ge#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {cond#,ge#,minus#} and constructors {0,false,s,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(cond#) = {1}, uargs(c_2) = {1}, uargs(c_5) = {1}, uargs(c_6) = {1,2} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(cond) = [1] x2 + [0] p(false) = [1] p(ge) = [1] p(minus) = [0] p(s) = [0] p(true) = [1] p(cond#) = [1] x1 + [5] x2 + [9] p(ge#) = [0] p(minus#) = [5] x1 + [11] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [1] x1 + [0] p(c_6) = [1] x1 + [1] x2 + [0] Following rules are strictly oriented: minus#(x,y) = [5] x + [11] > [5] x + [10] = c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) Following rules are (at-least) weakly oriented: cond#(true(),x,y) = [5] x + [10] >= [5] x + [11] = c_2(minus#(x,s(y))) ge#(s(u),s(v)) = [0] >= [0] = c_5(ge#(u,v)) ge(u,0()) = [1] >= [1] = true() ge(0(),s(v)) = [1] >= [1] = false() ge(s(u),s(v)) = [1] >= [1] = ge(u,v) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 6: Failure MAYBE + Considered Problem: - Strict DPs: cond#(true(),x,y) -> c_2(minus#(x,s(y))) ge#(s(u),s(v)) -> c_5(ge#(u,v)) - Weak DPs: minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) - Weak TRS: ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) - Signature: {cond/3,ge/2,minus/2,cond#/3,ge#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {cond#,ge#,minus#} and constructors {0,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE