MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: f(true(),x,y,z) -> g(gt(x,y),x,y,z) g(true(),x,y,z) -> f(gt(x,z),x,y,s(z)) g(true(),x,y,z) -> f(gt(x,z),x,s(y),z) gt(0(),v) -> false() gt(s(u),0()) -> true() gt(s(u),s(v)) -> gt(u,v) - Signature: {f/4,g/4,gt/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,g,gt} and constructors {0,false,s,true} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(true(),x,y,z) -> c_1(g#(gt(x,y),x,y,z),gt#(x,y)) g#(true(),x,y,z) -> c_2(f#(gt(x,z),x,y,s(z)),gt#(x,z)) g#(true(),x,y,z) -> c_3(f#(gt(x,z),x,s(y),z),gt#(x,z)) gt#(0(),v) -> c_4() gt#(s(u),0()) -> c_5() gt#(s(u),s(v)) -> c_6(gt#(u,v)) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: f#(true(),x,y,z) -> c_1(g#(gt(x,y),x,y,z),gt#(x,y)) g#(true(),x,y,z) -> c_2(f#(gt(x,z),x,y,s(z)),gt#(x,z)) g#(true(),x,y,z) -> c_3(f#(gt(x,z),x,s(y),z),gt#(x,z)) gt#(0(),v) -> c_4() gt#(s(u),0()) -> c_5() gt#(s(u),s(v)) -> c_6(gt#(u,v)) - Weak TRS: f(true(),x,y,z) -> g(gt(x,y),x,y,z) g(true(),x,y,z) -> f(gt(x,z),x,y,s(z)) g(true(),x,y,z) -> f(gt(x,z),x,s(y),z) gt(0(),v) -> false() gt(s(u),0()) -> true() gt(s(u),s(v)) -> gt(u,v) - Signature: {f/4,g/4,gt/2,f#/4,g#/4,gt#/2} / {0/0,false/0,s/1,true/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,gt#} and constructors {0,false,s,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: gt(0(),v) -> false() gt(s(u),0()) -> true() gt(s(u),s(v)) -> gt(u,v) f#(true(),x,y,z) -> c_1(g#(gt(x,y),x,y,z),gt#(x,y)) g#(true(),x,y,z) -> c_2(f#(gt(x,z),x,y,s(z)),gt#(x,z)) g#(true(),x,y,z) -> c_3(f#(gt(x,z),x,s(y),z),gt#(x,z)) gt#(0(),v) -> c_4() gt#(s(u),0()) -> c_5() gt#(s(u),s(v)) -> c_6(gt#(u,v)) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: f#(true(),x,y,z) -> c_1(g#(gt(x,y),x,y,z),gt#(x,y)) g#(true(),x,y,z) -> c_2(f#(gt(x,z),x,y,s(z)),gt#(x,z)) g#(true(),x,y,z) -> c_3(f#(gt(x,z),x,s(y),z),gt#(x,z)) gt#(0(),v) -> c_4() gt#(s(u),0()) -> c_5() gt#(s(u),s(v)) -> c_6(gt#(u,v)) - Weak TRS: gt(0(),v) -> false() gt(s(u),0()) -> true() gt(s(u),s(v)) -> gt(u,v) - Signature: {f/4,g/4,gt/2,f#/4,g#/4,gt#/2} / {0/0,false/0,s/1,true/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,gt#} and constructors {0,false,s,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {4,5} by application of Pre({4,5}) = {1,2,3,6}. Here rules are labelled as follows: 1: f#(true(),x,y,z) -> c_1(g#(gt(x,y),x,y,z),gt#(x,y)) 2: g#(true(),x,y,z) -> c_2(f#(gt(x,z),x,y,s(z)),gt#(x,z)) 3: g#(true(),x,y,z) -> c_3(f#(gt(x,z),x,s(y),z),gt#(x,z)) 4: gt#(0(),v) -> c_4() 5: gt#(s(u),0()) -> c_5() 6: gt#(s(u),s(v)) -> c_6(gt#(u,v)) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: f#(true(),x,y,z) -> c_1(g#(gt(x,y),x,y,z),gt#(x,y)) g#(true(),x,y,z) -> c_2(f#(gt(x,z),x,y,s(z)),gt#(x,z)) g#(true(),x,y,z) -> c_3(f#(gt(x,z),x,s(y),z),gt#(x,z)) gt#(s(u),s(v)) -> c_6(gt#(u,v)) - Weak DPs: gt#(0(),v) -> c_4() gt#(s(u),0()) -> c_5() - Weak TRS: gt(0(),v) -> false() gt(s(u),0()) -> true() gt(s(u),s(v)) -> gt(u,v) - Signature: {f/4,g/4,gt/2,f#/4,g#/4,gt#/2} / {0/0,false/0,s/1,true/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,gt#} and constructors {0,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(true(),x,y,z) -> c_1(g#(gt(x,y),x,y,z),gt#(x,y)) -->_2 gt#(s(u),s(v)) -> c_6(gt#(u,v)):4 -->_1 g#(true(),x,y,z) -> c_3(f#(gt(x,z),x,s(y),z),gt#(x,z)):3 -->_1 g#(true(),x,y,z) -> c_2(f#(gt(x,z),x,y,s(z)),gt#(x,z)):2 -->_2 gt#(s(u),0()) -> c_5():6 -->_2 gt#(0(),v) -> c_4():5 2:S:g#(true(),x,y,z) -> c_2(f#(gt(x,z),x,y,s(z)),gt#(x,z)) -->_2 gt#(s(u),s(v)) -> c_6(gt#(u,v)):4 -->_2 gt#(s(u),0()) -> c_5():6 -->_2 gt#(0(),v) -> c_4():5 -->_1 f#(true(),x,y,z) -> c_1(g#(gt(x,y),x,y,z),gt#(x,y)):1 3:S:g#(true(),x,y,z) -> c_3(f#(gt(x,z),x,s(y),z),gt#(x,z)) -->_2 gt#(s(u),s(v)) -> c_6(gt#(u,v)):4 -->_2 gt#(s(u),0()) -> c_5():6 -->_2 gt#(0(),v) -> c_4():5 -->_1 f#(true(),x,y,z) -> c_1(g#(gt(x,y),x,y,z),gt#(x,y)):1 4:S:gt#(s(u),s(v)) -> c_6(gt#(u,v)) -->_1 gt#(s(u),0()) -> c_5():6 -->_1 gt#(0(),v) -> c_4():5 -->_1 gt#(s(u),s(v)) -> c_6(gt#(u,v)):4 5:W:gt#(0(),v) -> c_4() 6:W:gt#(s(u),0()) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: gt#(0(),v) -> c_4() 6: gt#(s(u),0()) -> c_5() * Step 5: WeightGap MAYBE + Considered Problem: - Strict DPs: f#(true(),x,y,z) -> c_1(g#(gt(x,y),x,y,z),gt#(x,y)) g#(true(),x,y,z) -> c_2(f#(gt(x,z),x,y,s(z)),gt#(x,z)) g#(true(),x,y,z) -> c_3(f#(gt(x,z),x,s(y),z),gt#(x,z)) gt#(s(u),s(v)) -> c_6(gt#(u,v)) - Weak TRS: gt(0(),v) -> false() gt(s(u),0()) -> true() gt(s(u),s(v)) -> gt(u,v) - Signature: {f/4,g/4,gt/2,f#/4,g#/4,gt#/2} / {0/0,false/0,s/1,true/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,gt#} and constructors {0,false,s,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(f#) = {1}, uargs(g#) = {1}, uargs(c_1) = {1,2}, uargs(c_2) = {1,2}, uargs(c_3) = {1,2}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(f) = [0] p(false) = [0] p(g) = [0] p(gt) = [1] p(s) = [1] p(true) = [1] p(f#) = [1] x1 + [0] p(g#) = [1] x1 + [6] p(gt#) = [5] p(c_1) = [1] x1 + [1] x2 + [0] p(c_2) = [1] x1 + [1] x2 + [1] p(c_3) = [1] x1 + [1] x2 + [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [1] x1 + [0] Following rules are strictly oriented: g#(true(),x,y,z) = [7] > [6] = c_3(f#(gt(x,z),x,s(y),z),gt#(x,z)) Following rules are (at-least) weakly oriented: f#(true(),x,y,z) = [1] >= [12] = c_1(g#(gt(x,y),x,y,z),gt#(x,y)) g#(true(),x,y,z) = [7] >= [7] = c_2(f#(gt(x,z),x,y,s(z)),gt#(x,z)) gt#(s(u),s(v)) = [5] >= [5] = c_6(gt#(u,v)) gt(0(),v) = [1] >= [0] = false() gt(s(u),0()) = [1] >= [1] = true() gt(s(u),s(v)) = [1] >= [1] = gt(u,v) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 6: WeightGap MAYBE + Considered Problem: - Strict DPs: f#(true(),x,y,z) -> c_1(g#(gt(x,y),x,y,z),gt#(x,y)) g#(true(),x,y,z) -> c_2(f#(gt(x,z),x,y,s(z)),gt#(x,z)) gt#(s(u),s(v)) -> c_6(gt#(u,v)) - Weak DPs: g#(true(),x,y,z) -> c_3(f#(gt(x,z),x,s(y),z),gt#(x,z)) - Weak TRS: gt(0(),v) -> false() gt(s(u),0()) -> true() gt(s(u),s(v)) -> gt(u,v) - Signature: {f/4,g/4,gt/2,f#/4,g#/4,gt#/2} / {0/0,false/0,s/1,true/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,gt#} and constructors {0,false,s,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(f#) = {1}, uargs(g#) = {1}, uargs(c_1) = {1,2}, uargs(c_2) = {1,2}, uargs(c_3) = {1,2}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(f) = [1] x2 + [1] x3 + [1] p(false) = [0] p(g) = [2] x2 + [1] x3 + [0] p(gt) = [1] p(s) = [1] p(true) = [0] p(f#) = [1] x1 + [1] x4 + [0] p(g#) = [1] x1 + [1] x4 + [3] p(gt#) = [0] p(c_1) = [1] x1 + [1] x2 + [4] p(c_2) = [1] x1 + [1] x2 + [0] p(c_3) = [1] x1 + [1] x2 + [2] p(c_4) = [0] p(c_5) = [1] p(c_6) = [1] x1 + [0] Following rules are strictly oriented: g#(true(),x,y,z) = [1] z + [3] > [2] = c_2(f#(gt(x,z),x,y,s(z)),gt#(x,z)) Following rules are (at-least) weakly oriented: f#(true(),x,y,z) = [1] z + [0] >= [1] z + [8] = c_1(g#(gt(x,y),x,y,z),gt#(x,y)) g#(true(),x,y,z) = [1] z + [3] >= [1] z + [3] = c_3(f#(gt(x,z),x,s(y),z),gt#(x,z)) gt#(s(u),s(v)) = [0] >= [0] = c_6(gt#(u,v)) gt(0(),v) = [1] >= [0] = false() gt(s(u),0()) = [1] >= [0] = true() gt(s(u),s(v)) = [1] >= [1] = gt(u,v) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 7: Failure MAYBE + Considered Problem: - Strict DPs: f#(true(),x,y,z) -> c_1(g#(gt(x,y),x,y,z),gt#(x,y)) gt#(s(u),s(v)) -> c_6(gt#(u,v)) - Weak DPs: g#(true(),x,y,z) -> c_2(f#(gt(x,z),x,y,s(z)),gt#(x,z)) g#(true(),x,y,z) -> c_3(f#(gt(x,z),x,s(y),z),gt#(x,z)) - Weak TRS: gt(0(),v) -> false() gt(s(u),0()) -> true() gt(s(u),s(v)) -> gt(u,v) - Signature: {f/4,g/4,gt/2,f#/4,g#/4,gt#/2} / {0/0,false/0,s/1,true/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,gt#} and constructors {0,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE