WORST_CASE(?,O(n^2))
* Step 1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3} / {der/1,dout/1,plus/2,times/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din,u21,u22,u31,u32,u41,u42} and constructors {der,dout
            ,plus,times}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
          din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
          din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
          u21#(dout(DX),X,Y) -> c_4(u22#(din(der(Y)),X,Y,DX),din#(der(Y)))
          u22#(dout(DY),X,Y,DX) -> c_5()
          u31#(dout(DX),X,Y) -> c_6(u32#(din(der(Y)),X,Y,DX),din#(der(Y)))
          u32#(dout(DY),X,Y,DX) -> c_7()
          u41#(dout(DX),X) -> c_8(u42#(din(der(DX)),X,DX),din#(der(DX)))
          u42#(dout(DDX),X,DX) -> c_9()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u21#(dout(DX),X,Y) -> c_4(u22#(din(der(Y)),X,Y,DX),din#(der(Y)))
            u22#(dout(DY),X,Y,DX) -> c_5()
            u31#(dout(DX),X,Y) -> c_6(u32#(din(der(Y)),X,Y,DX),din#(der(Y)))
            u32#(dout(DY),X,Y,DX) -> c_7()
            u41#(dout(DX),X) -> c_8(u42#(din(der(DX)),X,DX),din#(der(DX)))
            u42#(dout(DDX),X,DX) -> c_9()
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/2,c_5/0,c_6/2,c_7/0,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {5,7,9}
        by application of
          Pre({5,7,9}) = {4,6,8}.
        Here rules are labelled as follows:
          1: din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
          2: din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
          3: din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
          4: u21#(dout(DX),X,Y) -> c_4(u22#(din(der(Y)),X,Y,DX),din#(der(Y)))
          5: u22#(dout(DY),X,Y,DX) -> c_5()
          6: u31#(dout(DX),X,Y) -> c_6(u32#(din(der(Y)),X,Y,DX),din#(der(Y)))
          7: u32#(dout(DY),X,Y,DX) -> c_7()
          8: u41#(dout(DX),X) -> c_8(u42#(din(der(DX)),X,DX),din#(der(DX)))
          9: u42#(dout(DDX),X,DX) -> c_9()
* Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u21#(dout(DX),X,Y) -> c_4(u22#(din(der(Y)),X,Y,DX),din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(u32#(din(der(Y)),X,Y,DX),din#(der(Y)))
            u41#(dout(DX),X) -> c_8(u42#(din(der(DX)),X,DX),din#(der(DX)))
        - Weak DPs:
            u22#(dout(DY),X,Y,DX) -> c_5()
            u32#(dout(DY),X,Y,DX) -> c_7()
            u42#(dout(DDX),X,DX) -> c_9()
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/2,c_5/0,c_6/2,c_7/0,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
             -->_1 u41#(dout(DX),X) -> c_8(u42#(din(der(DX)),X,DX),din#(der(DX))):6
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          2:S:din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
             -->_1 u21#(dout(DX),X,Y) -> c_4(u22#(din(der(Y)),X,Y,DX),din#(der(Y))):4
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          3:S:din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
             -->_1 u31#(dout(DX),X,Y) -> c_6(u32#(din(der(Y)),X,Y,DX),din#(der(Y))):5
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          4:S:u21#(dout(DX),X,Y) -> c_4(u22#(din(der(Y)),X,Y,DX),din#(der(Y)))
             -->_1 u22#(dout(DY),X,Y,DX) -> c_5():7
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          5:S:u31#(dout(DX),X,Y) -> c_6(u32#(din(der(Y)),X,Y,DX),din#(der(Y)))
             -->_1 u32#(dout(DY),X,Y,DX) -> c_7():8
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          6:S:u41#(dout(DX),X) -> c_8(u42#(din(der(DX)),X,DX),din#(der(DX)))
             -->_1 u42#(dout(DDX),X,DX) -> c_9():9
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          7:W:u22#(dout(DY),X,Y,DX) -> c_5()
             
          
          8:W:u32#(dout(DY),X,Y,DX) -> c_7()
             
          
          9:W:u42#(dout(DDX),X,DX) -> c_9()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          7: u22#(dout(DY),X,Y,DX) -> c_5()
          8: u32#(dout(DY),X,Y,DX) -> c_7()
          9: u42#(dout(DDX),X,DX) -> c_9()
* Step 4: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u21#(dout(DX),X,Y) -> c_4(u22#(din(der(Y)),X,Y,DX),din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(u32#(din(der(Y)),X,Y,DX),din#(der(Y)))
            u41#(dout(DX),X) -> c_8(u42#(din(der(DX)),X,DX),din#(der(DX)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/2,c_5/0,c_6/2,c_7/0,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
             -->_1 u41#(dout(DX),X) -> c_8(u42#(din(der(DX)),X,DX),din#(der(DX))):6
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          2:S:din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
             -->_1 u21#(dout(DX),X,Y) -> c_4(u22#(din(der(Y)),X,Y,DX),din#(der(Y))):4
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          3:S:din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
             -->_1 u31#(dout(DX),X,Y) -> c_6(u32#(din(der(Y)),X,Y,DX),din#(der(Y))):5
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          4:S:u21#(dout(DX),X,Y) -> c_4(u22#(din(der(Y)),X,Y,DX),din#(der(Y)))
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          5:S:u31#(dout(DX),X,Y) -> c_6(u32#(din(der(Y)),X,Y,DX),din#(der(Y)))
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          6:S:u41#(dout(DX),X) -> c_8(u42#(din(der(DX)),X,DX),din#(der(DX)))
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
          u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
          u41#(dout(DX),X) -> c_8(din#(der(DX)))
* Step 5: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          4: u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
          
        The strictly oriented rules are moved into the weak component.
** Step 5.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1,2},
          uargs(c_3) = {1,2},
          uargs(c_4) = {1},
          uargs(c_6) = {1},
          uargs(c_8) = {1}
        
        Following symbols are considered usable:
          {din,u21,u22,u31,u32,u41,u42,din#,u21#,u22#,u31#,u32#,u41#,u42#}
        TcT has computed the following interpretation:
            p(der) = [0]                           
            p(din) = [0]                           
           p(dout) = [1]                           
           p(plus) = [1] x2 + [0]                  
          p(times) = [1] x2 + [1]                  
            p(u21) = [0]                           
            p(u22) = [1] x1 + [0]                  
            p(u31) = [1] x1 + [0]                  
            p(u32) = [1]                           
            p(u41) = [1] x1 + [0]                  
            p(u42) = [7] x1 + [0]                  
           p(din#) = [0]                           
           p(u21#) = [2] x1 + [0]                  
           p(u22#) = [4] x4 + [1]                  
           p(u31#) = [6] x1 + [0]                  
           p(u32#) = [1] x1 + [2] x3 + [2] x4 + [1]
           p(u41#) = [0]                           
           p(u42#) = [0]                           
            p(c_1) = [4] x1 + [2] x2 + [0]         
            p(c_2) = [1] x1 + [1] x2 + [0]         
            p(c_3) = [1] x1 + [2] x2 + [0]         
            p(c_4) = [1] x1 + [0]                  
            p(c_5) = [1]                           
            p(c_6) = [2] x1 + [6]                  
            p(c_7) = [1]                           
            p(c_8) = [4] x1 + [0]                  
            p(c_9) = [1]                           
        
        Following rules are strictly oriented:
        u21#(dout(DX),X,Y) = [2]              
                           > [0]              
                           = c_4(din#(der(Y)))
        
        
        Following rules are (at-least) weakly oriented:
            din#(der(der(X))) =  [0]                                    
                              >= [0]                                    
                              =  c_1(u41#(din(der(X)),X),din#(der(X)))  
        
         din#(der(plus(X,Y))) =  [0]                                    
                              >= [0]                                    
                              =  c_2(u21#(din(der(X)),X,Y),din#(der(X)))
        
        din#(der(times(X,Y))) =  [0]                                    
                              >= [0]                                    
                              =  c_3(u31#(din(der(X)),X,Y),din#(der(X)))
        
           u31#(dout(DX),X,Y) =  [6]                                    
                              >= [6]                                    
                              =  c_6(din#(der(Y)))                      
        
             u41#(dout(DX),X) =  [0]                                    
                              >= [0]                                    
                              =  c_8(din#(der(DX)))                     
        
             din(der(der(X))) =  [0]                                    
                              >= [0]                                    
                              =  u41(din(der(X)),X)                     
        
          din(der(plus(X,Y))) =  [0]                                    
                              >= [0]                                    
                              =  u21(din(der(X)),X,Y)                   
        
         din(der(times(X,Y))) =  [0]                                    
                              >= [0]                                    
                              =  u31(din(der(X)),X,Y)                   
        
            u21(dout(DX),X,Y) =  [0]                                    
                              >= [0]                                    
                              =  u22(din(der(Y)),X,Y,DX)                
        
         u22(dout(DY),X,Y,DX) =  [1]                                    
                              >= [1]                                    
                              =  dout(plus(DX,DY))                      
        
            u31(dout(DX),X,Y) =  [1]                                    
                              >= [1]                                    
                              =  u32(din(der(Y)),X,Y,DX)                
        
         u32(dout(DY),X,Y,DX) =  [1]                                    
                              >= [1]                                    
                              =  dout(plus(times(X,DY),times(Y,DX)))    
        
              u41(dout(DX),X) =  [1]                                    
                              >= [0]                                    
                              =  u42(din(der(DX)),X,DX)                 
        
          u42(dout(DDX),X,DX) =  [7]                                    
                              >= [1]                                    
                              =  dout(DDX)                              
        
** Step 5.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak DPs:
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

** Step 5.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak DPs:
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          4: u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
          5: u41#(dout(DX),X) -> c_8(din#(der(DX)))
          
        The strictly oriented rules are moved into the weak component.
*** Step 5.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak DPs:
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1,2},
          uargs(c_3) = {1,2},
          uargs(c_4) = {1},
          uargs(c_6) = {1},
          uargs(c_8) = {1}
        
        Following symbols are considered usable:
          {din,u21,u22,u31,u32,u41,u42,din#,u21#,u22#,u31#,u32#,u41#,u42#}
        TcT has computed the following interpretation:
            p(der) = [0]                  
            p(din) = [0]                  
           p(dout) = [2]                  
           p(plus) = [1] x2 + [1]         
          p(times) = [6]                  
            p(u21) = [3] x1 + [0]         
            p(u22) = [4] x1 + [5]         
            p(u31) = [4] x1 + [0]         
            p(u32) = [1] x1 + [3]         
            p(u41) = [1] x1 + [0]         
            p(u42) = [1] x1 + [0]         
           p(din#) = [0]                  
           p(u21#) = [3] x1 + [0]         
           p(u22#) = [1] x1 + [1] x2 + [1]
           p(u31#) = [4] x1 + [0]         
           p(u32#) = [2] x3 + [2]         
           p(u41#) = [4] x1 + [0]         
           p(u42#) = [4] x2 + [1] x3 + [0]
            p(c_1) = [1] x1 + [1] x2 + [0]
            p(c_2) = [4] x1 + [4] x2 + [0]
            p(c_3) = [4] x1 + [2] x2 + [0]
            p(c_4) = [1] x1 + [6]         
            p(c_5) = [2]                  
            p(c_6) = [4] x1 + [0]         
            p(c_7) = [1]                  
            p(c_8) = [4] x1 + [6]         
            p(c_9) = [1]                  
        
        Following rules are strictly oriented:
        u31#(dout(DX),X,Y) = [8]               
                           > [0]               
                           = c_6(din#(der(Y))) 
        
          u41#(dout(DX),X) = [8]               
                           > [6]               
                           = c_8(din#(der(DX)))
        
        
        Following rules are (at-least) weakly oriented:
            din#(der(der(X))) =  [0]                                    
                              >= [0]                                    
                              =  c_1(u41#(din(der(X)),X),din#(der(X)))  
        
         din#(der(plus(X,Y))) =  [0]                                    
                              >= [0]                                    
                              =  c_2(u21#(din(der(X)),X,Y),din#(der(X)))
        
        din#(der(times(X,Y))) =  [0]                                    
                              >= [0]                                    
                              =  c_3(u31#(din(der(X)),X,Y),din#(der(X)))
        
           u21#(dout(DX),X,Y) =  [6]                                    
                              >= [6]                                    
                              =  c_4(din#(der(Y)))                      
        
             din(der(der(X))) =  [0]                                    
                              >= [0]                                    
                              =  u41(din(der(X)),X)                     
        
          din(der(plus(X,Y))) =  [0]                                    
                              >= [0]                                    
                              =  u21(din(der(X)),X,Y)                   
        
         din(der(times(X,Y))) =  [0]                                    
                              >= [0]                                    
                              =  u31(din(der(X)),X,Y)                   
        
            u21(dout(DX),X,Y) =  [6]                                    
                              >= [5]                                    
                              =  u22(din(der(Y)),X,Y,DX)                
        
         u22(dout(DY),X,Y,DX) =  [13]                                   
                              >= [2]                                    
                              =  dout(plus(DX,DY))                      
        
            u31(dout(DX),X,Y) =  [8]                                    
                              >= [3]                                    
                              =  u32(din(der(Y)),X,Y,DX)                
        
         u32(dout(DY),X,Y,DX) =  [5]                                    
                              >= [2]                                    
                              =  dout(plus(times(X,DY),times(Y,DX)))    
        
              u41(dout(DX),X) =  [2]                                    
                              >= [0]                                    
                              =  u42(din(der(DX)),X,DX)                 
        
          u42(dout(DDX),X,DX) =  [2]                                    
                              >= [2]                                    
                              =  dout(DDX)                              
        
*** Step 5.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
        - Weak DPs:
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 5.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
        - Weak DPs:
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          3: din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
          
        Consider the set of all dependency pairs
          1: din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
          2: din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
          3: din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
          4: u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
          5: u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
          6: u41#(dout(DX),X) -> c_8(din#(der(DX)))
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {3}
        These cover all (indirect) predecessors of dependency pairs
          {3,5}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
**** Step 5.b:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
        - Weak DPs:
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1,2},
          uargs(c_3) = {1,2},
          uargs(c_4) = {1},
          uargs(c_6) = {1},
          uargs(c_8) = {1}
        
        Following symbols are considered usable:
          {din,u21,u22,u31,u32,u41,u42,din#,u21#,u22#,u31#,u32#,u41#,u42#}
        TcT has computed the following interpretation:
            p(der) = x1                                                  
            p(din) = 0                                                   
           p(dout) = 1 + x1                                              
           p(plus) = x1                                                  
          p(times) = 2 + x1                                              
            p(u21) = 2*x1 + 2*x1*x2 + 3*x1*x3 + 2*x1^2                   
            p(u22) = 2*x1 + 3*x1*x2 + 2*x1^2 + 2*x2*x4 + 3*x3 + x4 + x4^2
            p(u31) = 3*x1*x3 + 2*x1^2                                    
            p(u32) = x1 + x1*x2 + 2*x1*x3 + 2*x1^2 + 3*x3 + x3*x4        
            p(u41) = 2*x1*x2 + x1^2                                      
            p(u42) = 1 + 2*x1 + 2*x1*x2 + 2*x1^2 + 2*x2 + x2*x3 + x3     
           p(din#) = 1 + 2*x1                                            
           p(u21#) = 2*x1 + 2*x1*x2 + 2*x1*x3                            
           p(u22#) = x3^2                                                
           p(u31#) = 3 + x1 + 2*x1*x2 + 2*x1*x3 + x1^2                   
           p(u32#) = x1 + 2*x1*x2 + x1*x3 + 2*x2*x3 + 2*x3               
           p(u41#) = 2*x1                                                
           p(u42#) = 2 + x1 + 2*x2 + 2*x2^2                              
            p(c_1) = x1 + x2                                             
            p(c_2) = x1 + x2                                             
            p(c_3) = x1 + x2                                             
            p(c_4) = 1 + x1                                              
            p(c_5) = 0                                                   
            p(c_6) = x1                                                  
            p(c_7) = 0                                                   
            p(c_8) = x1                                                  
            p(c_9) = 1                                                   
        
        Following rules are strictly oriented:
        din#(der(times(X,Y))) = 5 + 2*X                                
                              > 4 + 2*X                                
                              = c_3(u31#(din(der(X)),X,Y),din#(der(X)))
        
        
        Following rules are (at-least) weakly oriented:
           din#(der(der(X))) =  1 + 2*X                                                    
                             >= 1 + 2*X                                                    
                             =  c_1(u41#(din(der(X)),X),din#(der(X)))                      
        
        din#(der(plus(X,Y))) =  1 + 2*X                                                    
                             >= 1 + 2*X                                                    
                             =  c_2(u21#(din(der(X)),X,Y),din#(der(X)))                    
        
          u21#(dout(DX),X,Y) =  2 + 2*DX + 2*DX*X + 2*DX*Y + 2*X + 2*Y                     
                             >= 2 + 2*Y                                                    
                             =  c_4(din#(der(Y)))                                          
        
          u31#(dout(DX),X,Y) =  5 + 3*DX + 2*DX*X + 2*DX*Y + DX^2 + 2*X + 2*Y              
                             >= 1 + 2*Y                                                    
                             =  c_6(din#(der(Y)))                                          
        
            u41#(dout(DX),X) =  2 + 2*DX                                                   
                             >= 1 + 2*DX                                                   
                             =  c_8(din#(der(DX)))                                         
        
            din(der(der(X))) =  0                                                          
                             >= 0                                                          
                             =  u41(din(der(X)),X)                                         
        
         din(der(plus(X,Y))) =  0                                                          
                             >= 0                                                          
                             =  u21(din(der(X)),X,Y)                                       
        
        din(der(times(X,Y))) =  0                                                          
                             >= 0                                                          
                             =  u31(din(der(X)),X,Y)                                       
        
           u21(dout(DX),X,Y) =  4 + 6*DX + 2*DX*X + 3*DX*Y + 2*DX^2 + 2*X + 3*Y            
                             >= DX + 2*DX*X + DX^2 + 3*Y                                   
                             =  u22(din(der(Y)),X,Y,DX)                                    
        
        u22(dout(DY),X,Y,DX) =  4 + DX + 2*DX*X + DX^2 + 6*DY + 3*DY*X + 2*DY^2 + 3*X + 3*Y
                             >= 1 + DX                                                     
                             =  dout(plus(DX,DY))                                          
        
           u31(dout(DX),X,Y) =  2 + 4*DX + 3*DX*Y + 2*DX^2 + 3*Y                           
                             >= DX*Y + 3*Y                                                 
                             =  u32(din(der(Y)),X,Y,DX)                                    
        
        u32(dout(DY),X,Y,DX) =  3 + DX*Y + 5*DY + DY*X + 2*DY*Y + 2*DY^2 + X + 5*Y         
                             >= 3 + X                                                      
                             =  dout(plus(times(X,DY),times(Y,DX)))                        
        
             u41(dout(DX),X) =  1 + 2*DX + 2*DX*X + DX^2 + 2*X                             
                             >= 1 + DX + DX*X + 2*X                                        
                             =  u42(din(der(DX)),X,DX)                                     
        
         u42(dout(DDX),X,DX) =  5 + 6*DDX + 2*DDX*X + 2*DDX^2 + DX + DX*X + 4*X            
                             >= 1 + DDX                                                    
                             =  dout(DDX)                                                  
        
**** Step 5.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
        - Weak DPs:
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 5.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
        - Weak DPs:
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
          
        Consider the set of all dependency pairs
          1: din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
          2: din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
          3: din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
          4: u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
          5: u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
          6: u41#(dout(DX),X) -> c_8(din#(der(DX)))
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {2}
        These cover all (indirect) predecessors of dependency pairs
          {2,4}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
***** Step 5.b:1.b:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
        - Weak DPs:
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1,2},
          uargs(c_3) = {1,2},
          uargs(c_4) = {1},
          uargs(c_6) = {1},
          uargs(c_8) = {1}
        
        Following symbols are considered usable:
          {din,u21,u22,u31,u32,u41,u42,din#,u21#,u22#,u31#,u32#,u41#,u42#}
        TcT has computed the following interpretation:
            p(der) = x1                                                                
            p(din) = 0                                                                 
           p(dout) = 1 + x1                                                            
           p(plus) = 2 + x1                                                            
          p(times) = 2 + x1                                                            
            p(u21) = x1 + 3*x1*x2 + 2*x1*x3 + 3*x1^2                                   
            p(u22) = 3 + x1*x2 + 3*x1*x3 + 3*x1*x4 + 3*x2 + 3*x2*x4 + x3 + x3*x4 + 3*x4
            p(u31) = 2*x1*x2 + x1^2                                                    
            p(u32) = 1 + 3*x1 + x1^2 + 2*x2 + 2*x4                                     
            p(u41) = 3*x1*x2                                                           
            p(u42) = x1 + x1*x2 + 3*x1^2 + 3*x2                                        
           p(din#) = 3*x1                                                              
           p(u21#) = 2*x1 + 3*x1*x3 + x1^2                                             
           p(u22#) = 2*x4 + x4^2                                                       
           p(u31#) = 3 + 3*x1*x3                                                       
           p(u32#) = x2^2                                                              
           p(u41#) = 2*x1^2                                                            
           p(u42#) = 1 + x1^2 + x2^2 + 2*x3^2                                          
            p(c_1) = x1 + x2                                                           
            p(c_2) = x1 + x2                                                           
            p(c_3) = 3 + x1 + x2                                                       
            p(c_4) = 3 + x1                                                            
            p(c_5) = 1                                                                 
            p(c_6) = x1                                                                
            p(c_7) = 0                                                                 
            p(c_8) = x1                                                                
            p(c_9) = 0                                                                 
        
        Following rules are strictly oriented:
        din#(der(plus(X,Y))) = 6 + 3*X                                
                             > 3*X                                    
                             = c_2(u21#(din(der(X)),X,Y),din#(der(X)))
        
        
        Following rules are (at-least) weakly oriented:
            din#(der(der(X))) =  3*X                                                           
                              >= 3*X                                                           
                              =  c_1(u41#(din(der(X)),X),din#(der(X)))                         
        
        din#(der(times(X,Y))) =  6 + 3*X                                                       
                              >= 6 + 3*X                                                       
                              =  c_3(u31#(din(der(X)),X,Y),din#(der(X)))                       
        
           u21#(dout(DX),X,Y) =  3 + 4*DX + 3*DX*Y + DX^2 + 3*Y                                
                              >= 3 + 3*Y                                                       
                              =  c_4(din#(der(Y)))                                             
        
           u31#(dout(DX),X,Y) =  3 + 3*DX*Y + 3*Y                                              
                              >= 3*Y                                                           
                              =  c_6(din#(der(Y)))                                             
        
             u41#(dout(DX),X) =  2 + 4*DX + 2*DX^2                                             
                              >= 3*DX                                                          
                              =  c_8(din#(der(DX)))                                            
        
             din(der(der(X))) =  0                                                             
                              >= 0                                                             
                              =  u41(din(der(X)),X)                                            
        
          din(der(plus(X,Y))) =  0                                                             
                              >= 0                                                             
                              =  u21(din(der(X)),X,Y)                                          
        
         din(der(times(X,Y))) =  0                                                             
                              >= 0                                                             
                              =  u31(din(der(X)),X,Y)                                          
        
            u21(dout(DX),X,Y) =  4 + 7*DX + 3*DX*X + 2*DX*Y + 3*DX^2 + 3*X + 2*Y               
                              >= 3 + 3*DX + 3*DX*X + DX*Y + 3*X + Y                            
                              =  u22(din(der(Y)),X,Y,DX)                                       
        
         u22(dout(DY),X,Y,DX) =  3 + 6*DX + 3*DX*DY + 3*DX*X + DX*Y + DY*X + 3*DY*Y + 4*X + 4*Y
                              >= 3 + DX                                                        
                              =  dout(plus(DX,DY))                                             
        
            u31(dout(DX),X,Y) =  1 + 2*DX + 2*DX*X + DX^2 + 2*X                                
                              >= 1 + 2*DX + 2*X                                                
                              =  u32(din(der(Y)),X,Y,DX)                                       
        
         u32(dout(DY),X,Y,DX) =  5 + 2*DX + 5*DY + DY^2 + 2*X                                  
                              >= 5 + X                                                         
                              =  dout(plus(times(X,DY),times(Y,DX)))                           
        
              u41(dout(DX),X) =  3*DX*X + 3*X                                                  
                              >= 3*X                                                           
                              =  u42(din(der(DX)),X,DX)                                        
        
          u42(dout(DDX),X,DX) =  4 + 7*DDX + DDX*X + 3*DDX^2 + 4*X                             
                              >= 1 + DDX                                                       
                              =  dout(DDX)                                                     
        
***** Step 5.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
        - Weak DPs:
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 5.b:1.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
        - Weak DPs:
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
          
        Consider the set of all dependency pairs
          1: din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
          2: din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
          3: din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
          4: u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
          5: u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
          6: u41#(dout(DX),X) -> c_8(din#(der(DX)))
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,6}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
****** Step 5.b:1.b:1.b:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
        - Weak DPs:
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1,2},
          uargs(c_3) = {1,2},
          uargs(c_4) = {1},
          uargs(c_6) = {1},
          uargs(c_8) = {1}
        
        Following symbols are considered usable:
          {din,u21,u22,u31,u32,u41,u42,din#,u21#,u22#,u31#,u32#,u41#,u42#}
        TcT has computed the following interpretation:
            p(der) = 1 + x1                                
            p(din) = 0                                     
           p(dout) = 2 + x1                                
           p(plus) = 1 + x1                                
          p(times) = x1 + x2                               
            p(u21) = 3*x1                                  
            p(u22) = 3 + 3*x4                              
            p(u31) = x1^2                                  
            p(u32) = 3*x1 + x1*x2 + x4                     
            p(u41) = 2*x1 + x1*x2                          
            p(u42) = x1 + x2*x3 + 2*x3                     
           p(din#) = 3*x1                                  
           p(u21#) = 2 + 2*x1 + 2*x1*x3                    
           p(u22#) = 2*x1 + x1*x3 + 2*x1^2 + 2*x2^2        
           p(u31#) = 2*x1 + 2*x1*x3                        
           p(u32#) = 1 + 2*x1 + 2*x1*x2 + x2 + x4          
           p(u41#) = x1^2                                  
           p(u42#) = 2 + x1*x2 + 2*x1*x3 + 2*x1^2 + x2 + x3
            p(c_1) = 1 + x1 + x2                           
            p(c_2) = 1 + x1 + x2                           
            p(c_3) = x1 + x2                               
            p(c_4) = x1                                    
            p(c_5) = 0                                     
            p(c_6) = 1 + x1                                
            p(c_7) = 0                                     
            p(c_8) = 1 + x1                                
            p(c_9) = 1                                     
        
        Following rules are strictly oriented:
        din#(der(der(X))) = 6 + 3*X                              
                          > 4 + 3*X                              
                          = c_1(u41#(din(der(X)),X),din#(der(X)))
        
        
        Following rules are (at-least) weakly oriented:
         din#(der(plus(X,Y))) =  6 + 3*X                                
                              >= 6 + 3*X                                
                              =  c_2(u21#(din(der(X)),X,Y),din#(der(X)))
        
        din#(der(times(X,Y))) =  3 + 3*X + 3*Y                          
                              >= 3 + 3*X                                
                              =  c_3(u31#(din(der(X)),X,Y),din#(der(X)))
        
           u21#(dout(DX),X,Y) =  6 + 2*DX + 2*DX*Y + 4*Y                
                              >= 3 + 3*Y                                
                              =  c_4(din#(der(Y)))                      
        
           u31#(dout(DX),X,Y) =  4 + 2*DX + 2*DX*Y + 4*Y                
                              >= 4 + 3*Y                                
                              =  c_6(din#(der(Y)))                      
        
             u41#(dout(DX),X) =  4 + 4*DX + DX^2                        
                              >= 4 + 3*DX                               
                              =  c_8(din#(der(DX)))                     
        
             din(der(der(X))) =  0                                      
                              >= 0                                      
                              =  u41(din(der(X)),X)                     
        
          din(der(plus(X,Y))) =  0                                      
                              >= 0                                      
                              =  u21(din(der(X)),X,Y)                   
        
         din(der(times(X,Y))) =  0                                      
                              >= 0                                      
                              =  u31(din(der(X)),X,Y)                   
        
            u21(dout(DX),X,Y) =  6 + 3*DX                               
                              >= 3 + 3*DX                               
                              =  u22(din(der(Y)),X,Y,DX)                
        
         u22(dout(DY),X,Y,DX) =  3 + 3*DX                               
                              >= 3 + DX                                 
                              =  dout(plus(DX,DY))                      
        
            u31(dout(DX),X,Y) =  4 + 4*DX + DX^2                        
                              >= DX                                     
                              =  u32(din(der(Y)),X,Y,DX)                
        
         u32(dout(DY),X,Y,DX) =  6 + DX + 3*DY + DY*X + 2*X             
                              >= 3 + DY + X                             
                              =  dout(plus(times(X,DY),times(Y,DX)))    
        
              u41(dout(DX),X) =  4 + 2*DX + DX*X + 2*X                  
                              >= 2*DX + DX*X                            
                              =  u42(din(der(DX)),X,DX)                 
        
          u42(dout(DDX),X,DX) =  2 + DDX + 2*DX + DX*X                  
                              >= 2 + DDX                                
                              =  dout(DDX)                              
        
****** Step 5.b:1.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 5.b:1.b:1.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
            din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
            din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
            u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
            u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
            u41#(dout(DX),X) -> c_8(din#(der(DX)))
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
             -->_1 u41#(dout(DX),X) -> c_8(din#(der(DX))):6
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          2:W:din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
             -->_1 u21#(dout(DX),X,Y) -> c_4(din#(der(Y))):4
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          3:W:din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
             -->_1 u31#(dout(DX),X,Y) -> c_6(din#(der(Y))):5
             -->_2 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_2 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_2 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          4:W:u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
             -->_1 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_1 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_1 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          5:W:u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
             -->_1 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_1 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_1 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
          6:W:u41#(dout(DX),X) -> c_8(din#(der(DX)))
             -->_1 din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X))):3
             -->_1 din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X))):2
             -->_1 din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: din#(der(der(X))) -> c_1(u41#(din(der(X)),X),din#(der(X)))
          6: u41#(dout(DX),X) -> c_8(din#(der(DX)))
          5: u31#(dout(DX),X,Y) -> c_6(din#(der(Y)))
          3: din#(der(times(X,Y))) -> c_3(u31#(din(der(X)),X,Y),din#(der(X)))
          4: u21#(dout(DX),X,Y) -> c_4(din#(der(Y)))
          2: din#(der(plus(X,Y))) -> c_2(u21#(din(der(X)),X,Y),din#(der(X)))
****** Step 5.b:1.b:1.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            din(der(der(X))) -> u41(din(der(X)),X)
            din(der(plus(X,Y))) -> u21(din(der(X)),X,Y)
            din(der(times(X,Y))) -> u31(din(der(X)),X,Y)
            u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX)
            u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY))
            u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX)
            u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX)))
            u41(dout(DX),X) -> u42(din(der(DX)),X,DX)
            u42(dout(DDX),X,DX) -> dout(DDX)
        - Signature:
            {din/1,u21/3,u22/4,u31/3,u32/4,u41/2,u42/3,din#/1,u21#/3,u22#/4,u31#/3,u32#/4,u41#/2,u42#/3} / {der/1,dout/1
            ,plus/2,times/2,c_1/2,c_2/2,c_3/2,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {din#,u21#,u22#,u31#,u32#,u41#,u42#} and constructors {der
            ,dout,plus,times}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^2))