MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            dbl1(0()) -> 01()
            dbl1(s(X)) -> s1(s1(dbl1(X)))
            dbls(cons(X,Y)) -> cons(dbl(X),dbls(Y))
            dbls(nil()) -> nil()
            from(X) -> cons(X,from(s(X)))
            indx(cons(X,Y),Z) -> cons(sel(X,Z),indx(Y,Z))
            indx(nil(),X) -> nil()
            quote(0()) -> 01()
            quote(dbl(X)) -> dbl1(X)
            quote(s(X)) -> s1(quote(X))
            quote(sel(X,Y)) -> sel1(X,Y)
            sel(0(),cons(X,Y)) -> X
            sel(s(X),cons(Y,Z)) -> sel(X,Z)
            sel1(0(),cons(X,Y)) -> X
            sel1(s(X),cons(Y,Z)) -> sel1(X,Z)
        - Signature:
            {dbl/1,dbl1/1,dbls/1,from/1,indx/2,quote/1,sel/2,sel1/2} / {0/0,01/0,cons/2,nil/0,s/1,s1/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {dbl,dbl1,dbls,from,indx,quote,sel
            ,sel1} and constructors {0,01,cons,nil,s,s1}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          dbl#(0()) -> c_1()
          dbl#(s(X)) -> c_2(dbl#(X))
          dbl1#(0()) -> c_3()
          dbl1#(s(X)) -> c_4(dbl1#(X))
          dbls#(cons(X,Y)) -> c_5(dbl#(X),dbls#(Y))
          dbls#(nil()) -> c_6()
          from#(X) -> c_7(from#(s(X)))
          indx#(cons(X,Y),Z) -> c_8(sel#(X,Z),indx#(Y,Z))
          indx#(nil(),X) -> c_9()
          quote#(0()) -> c_10()
          quote#(dbl(X)) -> c_11(dbl1#(X))
          quote#(s(X)) -> c_12(quote#(X))
          quote#(sel(X,Y)) -> c_13(sel1#(X,Y))
          sel#(0(),cons(X,Y)) -> c_14()
          sel#(s(X),cons(Y,Z)) -> c_15(sel#(X,Z))
          sel1#(0(),cons(X,Y)) -> c_16()
          sel1#(s(X),cons(Y,Z)) -> c_17(sel1#(X,Z))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            dbl#(0()) -> c_1()
            dbl#(s(X)) -> c_2(dbl#(X))
            dbl1#(0()) -> c_3()
            dbl1#(s(X)) -> c_4(dbl1#(X))
            dbls#(cons(X,Y)) -> c_5(dbl#(X),dbls#(Y))
            dbls#(nil()) -> c_6()
            from#(X) -> c_7(from#(s(X)))
            indx#(cons(X,Y),Z) -> c_8(sel#(X,Z),indx#(Y,Z))
            indx#(nil(),X) -> c_9()
            quote#(0()) -> c_10()
            quote#(dbl(X)) -> c_11(dbl1#(X))
            quote#(s(X)) -> c_12(quote#(X))
            quote#(sel(X,Y)) -> c_13(sel1#(X,Y))
            sel#(0(),cons(X,Y)) -> c_14()
            sel#(s(X),cons(Y,Z)) -> c_15(sel#(X,Z))
            sel1#(0(),cons(X,Y)) -> c_16()
            sel1#(s(X),cons(Y,Z)) -> c_17(sel1#(X,Z))
        - Weak TRS:
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            dbl1(0()) -> 01()
            dbl1(s(X)) -> s1(s1(dbl1(X)))
            dbls(cons(X,Y)) -> cons(dbl(X),dbls(Y))
            dbls(nil()) -> nil()
            from(X) -> cons(X,from(s(X)))
            indx(cons(X,Y),Z) -> cons(sel(X,Z),indx(Y,Z))
            indx(nil(),X) -> nil()
            quote(0()) -> 01()
            quote(dbl(X)) -> dbl1(X)
            quote(s(X)) -> s1(quote(X))
            quote(sel(X,Y)) -> sel1(X,Y)
            sel(0(),cons(X,Y)) -> X
            sel(s(X),cons(Y,Z)) -> sel(X,Z)
            sel1(0(),cons(X,Y)) -> X
            sel1(s(X),cons(Y,Z)) -> sel1(X,Z)
        - Signature:
            {dbl/1,dbl1/1,dbls/1,from/1,indx/2,quote/1,sel/2,sel1/2,dbl#/1,dbl1#/1,dbls#/1,from#/1,indx#/2,quote#/1
            ,sel#/2,sel1#/2} / {0/0,01/0,cons/2,nil/0,s/1,s1/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/2,c_6/0,c_7/1,c_8/2,c_9/0
            ,c_10/0,c_11/1,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {dbl#,dbl1#,dbls#,from#,indx#,quote#,sel#
            ,sel1#} and constructors {0,01,cons,nil,s,s1}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          dbl#(0()) -> c_1()
          dbl#(s(X)) -> c_2(dbl#(X))
          dbl1#(0()) -> c_3()
          dbl1#(s(X)) -> c_4(dbl1#(X))
          dbls#(cons(X,Y)) -> c_5(dbl#(X),dbls#(Y))
          dbls#(nil()) -> c_6()
          from#(X) -> c_7(from#(s(X)))
          indx#(cons(X,Y),Z) -> c_8(sel#(X,Z),indx#(Y,Z))
          indx#(nil(),X) -> c_9()
          quote#(0()) -> c_10()
          quote#(dbl(X)) -> c_11(dbl1#(X))
          quote#(s(X)) -> c_12(quote#(X))
          quote#(sel(X,Y)) -> c_13(sel1#(X,Y))
          sel#(0(),cons(X,Y)) -> c_14()
          sel#(s(X),cons(Y,Z)) -> c_15(sel#(X,Z))
          sel1#(0(),cons(X,Y)) -> c_16()
          sel1#(s(X),cons(Y,Z)) -> c_17(sel1#(X,Z))
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            dbl#(0()) -> c_1()
            dbl#(s(X)) -> c_2(dbl#(X))
            dbl1#(0()) -> c_3()
            dbl1#(s(X)) -> c_4(dbl1#(X))
            dbls#(cons(X,Y)) -> c_5(dbl#(X),dbls#(Y))
            dbls#(nil()) -> c_6()
            from#(X) -> c_7(from#(s(X)))
            indx#(cons(X,Y),Z) -> c_8(sel#(X,Z),indx#(Y,Z))
            indx#(nil(),X) -> c_9()
            quote#(0()) -> c_10()
            quote#(dbl(X)) -> c_11(dbl1#(X))
            quote#(s(X)) -> c_12(quote#(X))
            quote#(sel(X,Y)) -> c_13(sel1#(X,Y))
            sel#(0(),cons(X,Y)) -> c_14()
            sel#(s(X),cons(Y,Z)) -> c_15(sel#(X,Z))
            sel1#(0(),cons(X,Y)) -> c_16()
            sel1#(s(X),cons(Y,Z)) -> c_17(sel1#(X,Z))
        - Signature:
            {dbl/1,dbl1/1,dbls/1,from/1,indx/2,quote/1,sel/2,sel1/2,dbl#/1,dbl1#/1,dbls#/1,from#/1,indx#/2,quote#/1
            ,sel#/2,sel1#/2} / {0/0,01/0,cons/2,nil/0,s/1,s1/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/2,c_6/0,c_7/1,c_8/2,c_9/0
            ,c_10/0,c_11/1,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {dbl#,dbl1#,dbls#,from#,indx#,quote#,sel#
            ,sel1#} and constructors {0,01,cons,nil,s,s1}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,3,6,9,10,14,16}
        by application of
          Pre({1,3,6,9,10,14,16}) = {2,4,5,8,11,12,13,15,17}.
        Here rules are labelled as follows:
          1: dbl#(0()) -> c_1()
          2: dbl#(s(X)) -> c_2(dbl#(X))
          3: dbl1#(0()) -> c_3()
          4: dbl1#(s(X)) -> c_4(dbl1#(X))
          5: dbls#(cons(X,Y)) -> c_5(dbl#(X),dbls#(Y))
          6: dbls#(nil()) -> c_6()
          7: from#(X) -> c_7(from#(s(X)))
          8: indx#(cons(X,Y),Z) -> c_8(sel#(X,Z),indx#(Y,Z))
          9: indx#(nil(),X) -> c_9()
          10: quote#(0()) -> c_10()
          11: quote#(dbl(X)) -> c_11(dbl1#(X))
          12: quote#(s(X)) -> c_12(quote#(X))
          13: quote#(sel(X,Y)) -> c_13(sel1#(X,Y))
          14: sel#(0(),cons(X,Y)) -> c_14()
          15: sel#(s(X),cons(Y,Z)) -> c_15(sel#(X,Z))
          16: sel1#(0(),cons(X,Y)) -> c_16()
          17: sel1#(s(X),cons(Y,Z)) -> c_17(sel1#(X,Z))
* Step 4: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            dbl#(s(X)) -> c_2(dbl#(X))
            dbl1#(s(X)) -> c_4(dbl1#(X))
            dbls#(cons(X,Y)) -> c_5(dbl#(X),dbls#(Y))
            from#(X) -> c_7(from#(s(X)))
            indx#(cons(X,Y),Z) -> c_8(sel#(X,Z),indx#(Y,Z))
            quote#(dbl(X)) -> c_11(dbl1#(X))
            quote#(s(X)) -> c_12(quote#(X))
            quote#(sel(X,Y)) -> c_13(sel1#(X,Y))
            sel#(s(X),cons(Y,Z)) -> c_15(sel#(X,Z))
            sel1#(s(X),cons(Y,Z)) -> c_17(sel1#(X,Z))
        - Weak DPs:
            dbl#(0()) -> c_1()
            dbl1#(0()) -> c_3()
            dbls#(nil()) -> c_6()
            indx#(nil(),X) -> c_9()
            quote#(0()) -> c_10()
            sel#(0(),cons(X,Y)) -> c_14()
            sel1#(0(),cons(X,Y)) -> c_16()
        - Signature:
            {dbl/1,dbl1/1,dbls/1,from/1,indx/2,quote/1,sel/2,sel1/2,dbl#/1,dbl1#/1,dbls#/1,from#/1,indx#/2,quote#/1
            ,sel#/2,sel1#/2} / {0/0,01/0,cons/2,nil/0,s/1,s1/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/2,c_6/0,c_7/1,c_8/2,c_9/0
            ,c_10/0,c_11/1,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {dbl#,dbl1#,dbls#,from#,indx#,quote#,sel#
            ,sel1#} and constructors {0,01,cons,nil,s,s1}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:dbl#(s(X)) -> c_2(dbl#(X))
             -->_1 dbl#(0()) -> c_1():11
             -->_1 dbl#(s(X)) -> c_2(dbl#(X)):1
          
          2:S:dbl1#(s(X)) -> c_4(dbl1#(X))
             -->_1 dbl1#(0()) -> c_3():12
             -->_1 dbl1#(s(X)) -> c_4(dbl1#(X)):2
          
          3:S:dbls#(cons(X,Y)) -> c_5(dbl#(X),dbls#(Y))
             -->_2 dbls#(nil()) -> c_6():13
             -->_1 dbl#(0()) -> c_1():11
             -->_2 dbls#(cons(X,Y)) -> c_5(dbl#(X),dbls#(Y)):3
             -->_1 dbl#(s(X)) -> c_2(dbl#(X)):1
          
          4:S:from#(X) -> c_7(from#(s(X)))
             -->_1 from#(X) -> c_7(from#(s(X))):4
          
          5:S:indx#(cons(X,Y),Z) -> c_8(sel#(X,Z),indx#(Y,Z))
             -->_1 sel#(s(X),cons(Y,Z)) -> c_15(sel#(X,Z)):9
             -->_1 sel#(0(),cons(X,Y)) -> c_14():16
             -->_2 indx#(nil(),X) -> c_9():14
             -->_2 indx#(cons(X,Y),Z) -> c_8(sel#(X,Z),indx#(Y,Z)):5
          
          6:S:quote#(dbl(X)) -> c_11(dbl1#(X))
             -->_1 dbl1#(0()) -> c_3():12
             -->_1 dbl1#(s(X)) -> c_4(dbl1#(X)):2
          
          7:S:quote#(s(X)) -> c_12(quote#(X))
             -->_1 quote#(sel(X,Y)) -> c_13(sel1#(X,Y)):8
             -->_1 quote#(0()) -> c_10():15
             -->_1 quote#(s(X)) -> c_12(quote#(X)):7
             -->_1 quote#(dbl(X)) -> c_11(dbl1#(X)):6
          
          8:S:quote#(sel(X,Y)) -> c_13(sel1#(X,Y))
             -->_1 sel1#(s(X),cons(Y,Z)) -> c_17(sel1#(X,Z)):10
             -->_1 sel1#(0(),cons(X,Y)) -> c_16():17
          
          9:S:sel#(s(X),cons(Y,Z)) -> c_15(sel#(X,Z))
             -->_1 sel#(0(),cons(X,Y)) -> c_14():16
             -->_1 sel#(s(X),cons(Y,Z)) -> c_15(sel#(X,Z)):9
          
          10:S:sel1#(s(X),cons(Y,Z)) -> c_17(sel1#(X,Z))
             -->_1 sel1#(0(),cons(X,Y)) -> c_16():17
             -->_1 sel1#(s(X),cons(Y,Z)) -> c_17(sel1#(X,Z)):10
          
          11:W:dbl#(0()) -> c_1()
             
          
          12:W:dbl1#(0()) -> c_3()
             
          
          13:W:dbls#(nil()) -> c_6()
             
          
          14:W:indx#(nil(),X) -> c_9()
             
          
          15:W:quote#(0()) -> c_10()
             
          
          16:W:sel#(0(),cons(X,Y)) -> c_14()
             
          
          17:W:sel1#(0(),cons(X,Y)) -> c_16()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          15: quote#(0()) -> c_10()
          17: sel1#(0(),cons(X,Y)) -> c_16()
          14: indx#(nil(),X) -> c_9()
          16: sel#(0(),cons(X,Y)) -> c_14()
          13: dbls#(nil()) -> c_6()
          12: dbl1#(0()) -> c_3()
          11: dbl#(0()) -> c_1()
* Step 5: WeightGap MAYBE
    + Considered Problem:
        - Strict DPs:
            dbl#(s(X)) -> c_2(dbl#(X))
            dbl1#(s(X)) -> c_4(dbl1#(X))
            dbls#(cons(X,Y)) -> c_5(dbl#(X),dbls#(Y))
            from#(X) -> c_7(from#(s(X)))
            indx#(cons(X,Y),Z) -> c_8(sel#(X,Z),indx#(Y,Z))
            quote#(dbl(X)) -> c_11(dbl1#(X))
            quote#(s(X)) -> c_12(quote#(X))
            quote#(sel(X,Y)) -> c_13(sel1#(X,Y))
            sel#(s(X),cons(Y,Z)) -> c_15(sel#(X,Z))
            sel1#(s(X),cons(Y,Z)) -> c_17(sel1#(X,Z))
        - Signature:
            {dbl/1,dbl1/1,dbls/1,from/1,indx/2,quote/1,sel/2,sel1/2,dbl#/1,dbl1#/1,dbls#/1,from#/1,indx#/2,quote#/1
            ,sel#/2,sel1#/2} / {0/0,01/0,cons/2,nil/0,s/1,s1/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/2,c_6/0,c_7/1,c_8/2,c_9/0
            ,c_10/0,c_11/1,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {dbl#,dbl1#,dbls#,from#,indx#,quote#,sel#
            ,sel1#} and constructors {0,01,cons,nil,s,s1}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
          The following argument positions are considered usable:
            uargs(c_2) = {1},
            uargs(c_4) = {1},
            uargs(c_5) = {1,2},
            uargs(c_7) = {1},
            uargs(c_8) = {1,2},
            uargs(c_11) = {1},
            uargs(c_12) = {1},
            uargs(c_13) = {1},
            uargs(c_15) = {1},
            uargs(c_17) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                 p(0) = [0]                  
                p(01) = [0]                  
              p(cons) = [0]                  
               p(dbl) = [0]                  
              p(dbl1) = [0]                  
              p(dbls) = [0]                  
              p(from) = [1]                  
              p(indx) = [0]                  
               p(nil) = [0]                  
             p(quote) = [0]                  
                 p(s) = [1]                  
                p(s1) = [0]                  
               p(sel) = [0]                  
              p(sel1) = [1] x1 + [0]         
              p(dbl#) = [9]                  
             p(dbl1#) = [1]                  
             p(dbls#) = [0]                  
             p(from#) = [13] x1 + [0]        
             p(indx#) = [12]                 
            p(quote#) = [5]                  
              p(sel#) = [11]                 
             p(sel1#) = [0]                  
               p(c_1) = [0]                  
               p(c_2) = [1] x1 + [6]         
               p(c_3) = [0]                  
               p(c_4) = [1] x1 + [5]         
               p(c_5) = [1] x1 + [1] x2 + [8]
               p(c_6) = [0]                  
               p(c_7) = [1] x1 + [0]         
               p(c_8) = [1] x1 + [1] x2 + [4]
               p(c_9) = [0]                  
              p(c_10) = [1]                  
              p(c_11) = [1] x1 + [5]         
              p(c_12) = [1] x1 + [0]         
              p(c_13) = [1] x1 + [3]         
              p(c_14) = [0]                  
              p(c_15) = [1] x1 + [1]         
              p(c_16) = [0]                  
              p(c_17) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          quote#(sel(X,Y)) = [5]             
                           > [3]             
                           = c_13(sel1#(X,Y))
          
          
          Following rules are (at-least) weakly oriented:
                     dbl#(s(X)) =  [9]                      
                                >= [15]                     
                                =  c_2(dbl#(X))             
          
                    dbl1#(s(X)) =  [1]                      
                                >= [6]                      
                                =  c_4(dbl1#(X))            
          
               dbls#(cons(X,Y)) =  [0]                      
                                >= [17]                     
                                =  c_5(dbl#(X),dbls#(Y))    
          
                       from#(X) =  [13] X + [0]             
                                >= [13]                     
                                =  c_7(from#(s(X)))         
          
             indx#(cons(X,Y),Z) =  [12]                     
                                >= [27]                     
                                =  c_8(sel#(X,Z),indx#(Y,Z))
          
                 quote#(dbl(X)) =  [5]                      
                                >= [6]                      
                                =  c_11(dbl1#(X))           
          
                   quote#(s(X)) =  [5]                      
                                >= [5]                      
                                =  c_12(quote#(X))          
          
           sel#(s(X),cons(Y,Z)) =  [11]                     
                                >= [12]                     
                                =  c_15(sel#(X,Z))          
          
          sel1#(s(X),cons(Y,Z)) =  [0]                      
                                >= [0]                      
                                =  c_17(sel1#(X,Z))         
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 6: WeightGap MAYBE
    + Considered Problem:
        - Strict DPs:
            dbl#(s(X)) -> c_2(dbl#(X))
            dbl1#(s(X)) -> c_4(dbl1#(X))
            dbls#(cons(X,Y)) -> c_5(dbl#(X),dbls#(Y))
            from#(X) -> c_7(from#(s(X)))
            indx#(cons(X,Y),Z) -> c_8(sel#(X,Z),indx#(Y,Z))
            quote#(dbl(X)) -> c_11(dbl1#(X))
            quote#(s(X)) -> c_12(quote#(X))
            sel#(s(X),cons(Y,Z)) -> c_15(sel#(X,Z))
            sel1#(s(X),cons(Y,Z)) -> c_17(sel1#(X,Z))
        - Weak DPs:
            quote#(sel(X,Y)) -> c_13(sel1#(X,Y))
        - Signature:
            {dbl/1,dbl1/1,dbls/1,from/1,indx/2,quote/1,sel/2,sel1/2,dbl#/1,dbl1#/1,dbls#/1,from#/1,indx#/2,quote#/1
            ,sel#/2,sel1#/2} / {0/0,01/0,cons/2,nil/0,s/1,s1/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/2,c_6/0,c_7/1,c_8/2,c_9/0
            ,c_10/0,c_11/1,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {dbl#,dbl1#,dbls#,from#,indx#,quote#,sel#
            ,sel1#} and constructors {0,01,cons,nil,s,s1}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
          The following argument positions are considered usable:
            uargs(c_2) = {1},
            uargs(c_4) = {1},
            uargs(c_5) = {1,2},
            uargs(c_7) = {1},
            uargs(c_8) = {1,2},
            uargs(c_11) = {1},
            uargs(c_12) = {1},
            uargs(c_13) = {1},
            uargs(c_15) = {1},
            uargs(c_17) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                 p(0) = [2]                  
                p(01) = [1]                  
              p(cons) = [0]                  
               p(dbl) = [1] x1 + [0]         
              p(dbl1) = [1] x1 + [1]         
              p(dbls) = [2]                  
              p(from) = [1] x1 + [0]         
              p(indx) = [4] x2 + [0]         
               p(nil) = [1]                  
             p(quote) = [1] x1 + [0]         
                 p(s) = [13]                 
                p(s1) = [2]                  
               p(sel) = [1] x1 + [1] x2 + [1]
              p(sel1) = [8]                  
              p(dbl#) = [12]                 
             p(dbl1#) = [1]                  
             p(dbls#) = [8]                  
             p(from#) = [1] x1 + [0]         
             p(indx#) = [3] x2 + [4]         
            p(quote#) = [8]                  
              p(sel#) = [0]                  
             p(sel1#) = [4]                  
               p(c_1) = [1]                  
               p(c_2) = [1] x1 + [15]        
               p(c_3) = [2]                  
               p(c_4) = [1] x1 + [1]         
               p(c_5) = [1] x1 + [1] x2 + [8]
               p(c_6) = [0]                  
               p(c_7) = [1] x1 + [0]         
               p(c_8) = [1] x1 + [1] x2 + [9]
               p(c_9) = [2]                  
              p(c_10) = [8]                  
              p(c_11) = [1] x1 + [3]         
              p(c_12) = [1] x1 + [1]         
              p(c_13) = [1] x1 + [4]         
              p(c_14) = [1]                  
              p(c_15) = [1] x1 + [0]         
              p(c_16) = [0]                  
              p(c_17) = [1] x1 + [4]         
          
          Following rules are strictly oriented:
          quote#(dbl(X)) = [8]           
                         > [4]           
                         = c_11(dbl1#(X))
          
          
          Following rules are (at-least) weakly oriented:
                     dbl#(s(X)) =  [12]                     
                                >= [27]                     
                                =  c_2(dbl#(X))             
          
                    dbl1#(s(X)) =  [1]                      
                                >= [2]                      
                                =  c_4(dbl1#(X))            
          
               dbls#(cons(X,Y)) =  [8]                      
                                >= [28]                     
                                =  c_5(dbl#(X),dbls#(Y))    
          
                       from#(X) =  [1] X + [0]              
                                >= [13]                     
                                =  c_7(from#(s(X)))         
          
             indx#(cons(X,Y),Z) =  [3] Z + [4]              
                                >= [3] Z + [13]             
                                =  c_8(sel#(X,Z),indx#(Y,Z))
          
                   quote#(s(X)) =  [8]                      
                                >= [9]                      
                                =  c_12(quote#(X))          
          
               quote#(sel(X,Y)) =  [8]                      
                                >= [8]                      
                                =  c_13(sel1#(X,Y))         
          
           sel#(s(X),cons(Y,Z)) =  [0]                      
                                >= [0]                      
                                =  c_15(sel#(X,Z))          
          
          sel1#(s(X),cons(Y,Z)) =  [4]                      
                                >= [8]                      
                                =  c_17(sel1#(X,Z))         
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 7: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          dbl#(s(X)) -> c_2(dbl#(X))
          dbl1#(s(X)) -> c_4(dbl1#(X))
          dbls#(cons(X,Y)) -> c_5(dbl#(X),dbls#(Y))
          from#(X) -> c_7(from#(s(X)))
          indx#(cons(X,Y),Z) -> c_8(sel#(X,Z),indx#(Y,Z))
          quote#(s(X)) -> c_12(quote#(X))
          sel#(s(X),cons(Y,Z)) -> c_15(sel#(X,Z))
          sel1#(s(X),cons(Y,Z)) -> c_17(sel1#(X,Z))
      - Weak DPs:
          quote#(dbl(X)) -> c_11(dbl1#(X))
          quote#(sel(X,Y)) -> c_13(sel1#(X,Y))
      - Signature:
          {dbl/1,dbl1/1,dbls/1,from/1,indx/2,quote/1,sel/2,sel1/2,dbl#/1,dbl1#/1,dbls#/1,from#/1,indx#/2,quote#/1
          ,sel#/2,sel1#/2} / {0/0,01/0,cons/2,nil/0,s/1,s1/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/2,c_6/0,c_7/1,c_8/2,c_9/0
          ,c_10/0,c_11/1,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {dbl#,dbl1#,dbls#,from#,indx#,quote#,sel#
          ,sel1#} and constructors {0,01,cons,nil,s,s1}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE