MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: a__c() -> a() a__c() -> b() a__c() -> c() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),b(),X) -> a__f(X,X,mark(X)) mark(a()) -> a() mark(b()) -> b() mark(c()) -> a__c() mark(f(X1,X2,X3)) -> a__f(X1,X2,mark(X3)) - Signature: {a__c/0,a__f/3,mark/1} / {a/0,b/0,c/0,f/3} - Obligation: innermost runtime complexity wrt. defined symbols {a__c,a__f,mark} and constructors {a,b,c,f} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs a__c#() -> c_1() a__c#() -> c_2() a__c#() -> c_3() a__f#(X1,X2,X3) -> c_4() a__f#(a(),b(),X) -> c_5(a__f#(X,X,mark(X)),mark#(X)) mark#(a()) -> c_6() mark#(b()) -> c_7() mark#(c()) -> c_8(a__c#()) mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)) Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: a__c#() -> c_1() a__c#() -> c_2() a__c#() -> c_3() a__f#(X1,X2,X3) -> c_4() a__f#(a(),b(),X) -> c_5(a__f#(X,X,mark(X)),mark#(X)) mark#(a()) -> c_6() mark#(b()) -> c_7() mark#(c()) -> c_8(a__c#()) mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)) - Weak TRS: a__c() -> a() a__c() -> b() a__c() -> c() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),b(),X) -> a__f(X,X,mark(X)) mark(a()) -> a() mark(b()) -> b() mark(c()) -> a__c() mark(f(X1,X2,X3)) -> a__f(X1,X2,mark(X3)) - Signature: {a__c/0,a__f/3,mark/1,a__c#/0,a__f#/3,mark#/1} / {a/0,b/0,c/0,f/3,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/0,c_7/0 ,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {a__c#,a__f#,mark#} and constructors {a,b,c,f} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2,3,4,6,7} by application of Pre({1,2,3,4,6,7}) = {5,8,9}. Here rules are labelled as follows: 1: a__c#() -> c_1() 2: a__c#() -> c_2() 3: a__c#() -> c_3() 4: a__f#(X1,X2,X3) -> c_4() 5: a__f#(a(),b(),X) -> c_5(a__f#(X,X,mark(X)),mark#(X)) 6: mark#(a()) -> c_6() 7: mark#(b()) -> c_7() 8: mark#(c()) -> c_8(a__c#()) 9: mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: a__f#(a(),b(),X) -> c_5(a__f#(X,X,mark(X)),mark#(X)) mark#(c()) -> c_8(a__c#()) mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)) - Weak DPs: a__c#() -> c_1() a__c#() -> c_2() a__c#() -> c_3() a__f#(X1,X2,X3) -> c_4() mark#(a()) -> c_6() mark#(b()) -> c_7() - Weak TRS: a__c() -> a() a__c() -> b() a__c() -> c() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),b(),X) -> a__f(X,X,mark(X)) mark(a()) -> a() mark(b()) -> b() mark(c()) -> a__c() mark(f(X1,X2,X3)) -> a__f(X1,X2,mark(X3)) - Signature: {a__c/0,a__f/3,mark/1,a__c#/0,a__f#/3,mark#/1} / {a/0,b/0,c/0,f/3,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/0,c_7/0 ,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {a__c#,a__f#,mark#} and constructors {a,b,c,f} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2} by application of Pre({2}) = {1,3}. Here rules are labelled as follows: 1: a__f#(a(),b(),X) -> c_5(a__f#(X,X,mark(X)),mark#(X)) 2: mark#(c()) -> c_8(a__c#()) 3: mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)) 4: a__c#() -> c_1() 5: a__c#() -> c_2() 6: a__c#() -> c_3() 7: a__f#(X1,X2,X3) -> c_4() 8: mark#(a()) -> c_6() 9: mark#(b()) -> c_7() * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: a__f#(a(),b(),X) -> c_5(a__f#(X,X,mark(X)),mark#(X)) mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)) - Weak DPs: a__c#() -> c_1() a__c#() -> c_2() a__c#() -> c_3() a__f#(X1,X2,X3) -> c_4() mark#(a()) -> c_6() mark#(b()) -> c_7() mark#(c()) -> c_8(a__c#()) - Weak TRS: a__c() -> a() a__c() -> b() a__c() -> c() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),b(),X) -> a__f(X,X,mark(X)) mark(a()) -> a() mark(b()) -> b() mark(c()) -> a__c() mark(f(X1,X2,X3)) -> a__f(X1,X2,mark(X3)) - Signature: {a__c/0,a__f/3,mark/1,a__c#/0,a__f#/3,mark#/1} / {a/0,b/0,c/0,f/3,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/0,c_7/0 ,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {a__c#,a__f#,mark#} and constructors {a,b,c,f} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:a__f#(a(),b(),X) -> c_5(a__f#(X,X,mark(X)),mark#(X)) -->_2 mark#(c()) -> c_8(a__c#()):9 -->_2 mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)):2 -->_2 mark#(b()) -> c_7():8 -->_2 mark#(a()) -> c_6():7 -->_1 a__f#(X1,X2,X3) -> c_4():6 2:S:mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)) -->_2 mark#(c()) -> c_8(a__c#()):9 -->_2 mark#(b()) -> c_7():8 -->_2 mark#(a()) -> c_6():7 -->_1 a__f#(X1,X2,X3) -> c_4():6 -->_2 mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)):2 -->_1 a__f#(a(),b(),X) -> c_5(a__f#(X,X,mark(X)),mark#(X)):1 3:W:a__c#() -> c_1() 4:W:a__c#() -> c_2() 5:W:a__c#() -> c_3() 6:W:a__f#(X1,X2,X3) -> c_4() 7:W:mark#(a()) -> c_6() 8:W:mark#(b()) -> c_7() 9:W:mark#(c()) -> c_8(a__c#()) -->_1 a__c#() -> c_3():5 -->_1 a__c#() -> c_2():4 -->_1 a__c#() -> c_1():3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: a__f#(X1,X2,X3) -> c_4() 7: mark#(a()) -> c_6() 8: mark#(b()) -> c_7() 9: mark#(c()) -> c_8(a__c#()) 3: a__c#() -> c_1() 4: a__c#() -> c_2() 5: a__c#() -> c_3() * Step 5: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: a__f#(a(),b(),X) -> c_5(a__f#(X,X,mark(X)),mark#(X)) mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)) - Weak TRS: a__c() -> a() a__c() -> b() a__c() -> c() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),b(),X) -> a__f(X,X,mark(X)) mark(a()) -> a() mark(b()) -> b() mark(c()) -> a__c() mark(f(X1,X2,X3)) -> a__f(X1,X2,mark(X3)) - Signature: {a__c/0,a__f/3,mark/1,a__c#/0,a__f#/3,mark#/1} / {a/0,b/0,c/0,f/3,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/0,c_7/0 ,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {a__c#,a__f#,mark#} and constructors {a,b,c,f} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:a__f#(a(),b(),X) -> c_5(a__f#(X,X,mark(X)),mark#(X)) -->_2 mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)):2 2:S:mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)) -->_2 mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)):2 -->_1 a__f#(a(),b(),X) -> c_5(a__f#(X,X,mark(X)),mark#(X)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: a__f#(a(),b(),X) -> c_5(mark#(X)) * Step 6: WeightGap MAYBE + Considered Problem: - Strict DPs: a__f#(a(),b(),X) -> c_5(mark#(X)) mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)) - Weak TRS: a__c() -> a() a__c() -> b() a__c() -> c() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),b(),X) -> a__f(X,X,mark(X)) mark(a()) -> a() mark(b()) -> b() mark(c()) -> a__c() mark(f(X1,X2,X3)) -> a__f(X1,X2,mark(X3)) - Signature: {a__c/0,a__f/3,mark/1,a__c#/0,a__f#/3,mark#/1} / {a/0,b/0,c/0,f/3,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {a__c#,a__f#,mark#} and constructors {a,b,c,f} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(a__f) = {3}, uargs(a__f#) = {3}, uargs(c_5) = {1}, uargs(c_9) = {1,2} Following symbols are considered usable: all TcT has computed the following interpretation: p(a) = [0] p(a__c) = [0] p(a__f) = [1] x3 + [0] p(b) = [0] p(c) = [0] p(f) = [0] p(mark) = [0] p(a__c#) = [2] p(a__f#) = [1] x3 + [6] p(mark#) = [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [1] x1 + [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [0] p(c_9) = [1] x1 + [1] x2 + [5] Following rules are strictly oriented: a__f#(a(),b(),X) = [1] X + [6] > [0] = c_5(mark#(X)) Following rules are (at-least) weakly oriented: mark#(f(X1,X2,X3)) = [0] >= [11] = c_9(a__f#(X1,X2,mark(X3)),mark#(X3)) a__c() = [0] >= [0] = a() a__c() = [0] >= [0] = b() a__c() = [0] >= [0] = c() a__f(X1,X2,X3) = [1] X3 + [0] >= [0] = f(X1,X2,X3) a__f(a(),b(),X) = [1] X + [0] >= [0] = a__f(X,X,mark(X)) mark(a()) = [0] >= [0] = a() mark(b()) = [0] >= [0] = b() mark(c()) = [0] >= [0] = a__c() mark(f(X1,X2,X3)) = [0] >= [0] = a__f(X1,X2,mark(X3)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 7: Failure MAYBE + Considered Problem: - Strict DPs: mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,mark(X3)),mark#(X3)) - Weak DPs: a__f#(a(),b(),X) -> c_5(mark#(X)) - Weak TRS: a__c() -> a() a__c() -> b() a__c() -> c() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),b(),X) -> a__f(X,X,mark(X)) mark(a()) -> a() mark(b()) -> b() mark(c()) -> a__c() mark(f(X1,X2,X3)) -> a__f(X1,X2,mark(X3)) - Signature: {a__c/0,a__f/3,mark/1,a__c#/0,a__f#/3,mark#/1} / {a/0,b/0,c/0,f/3,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {a__c#,a__f#,mark#} and constructors {a,b,c,f} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE