MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            a__incr(X) -> incr(X)
            a__incr(cons(X,XS)) -> cons(s(mark(X)),incr(XS))
            a__oddNs() -> a__incr(a__pairNs())
            a__oddNs() -> oddNs()
            a__pairNs() -> cons(0(),incr(oddNs()))
            a__pairNs() -> pairNs()
            a__repItems(X) -> repItems(X)
            a__repItems(cons(X,XS)) -> cons(mark(X),cons(X,repItems(XS)))
            a__repItems(nil()) -> nil()
            a__tail(X) -> tail(X)
            a__tail(cons(X,XS)) -> mark(XS)
            a__take(X1,X2) -> take(X1,X2)
            a__take(0(),XS) -> nil()
            a__take(s(N),cons(X,XS)) -> cons(mark(X),take(N,XS))
            a__zip(X,nil()) -> nil()
            a__zip(X1,X2) -> zip(X1,X2)
            a__zip(cons(X,XS),cons(Y,YS)) -> cons(pair(mark(X),mark(Y)),zip(XS,YS))
            a__zip(nil(),XS) -> nil()
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(incr(X)) -> a__incr(mark(X))
            mark(nil()) -> nil()
            mark(oddNs()) -> a__oddNs()
            mark(pair(X1,X2)) -> pair(mark(X1),mark(X2))
            mark(pairNs()) -> a__pairNs()
            mark(repItems(X)) -> a__repItems(mark(X))
            mark(s(X)) -> s(mark(X))
            mark(tail(X)) -> a__tail(mark(X))
            mark(take(X1,X2)) -> a__take(mark(X1),mark(X2))
            mark(zip(X1,X2)) -> a__zip(mark(X1),mark(X2))
        - Signature:
            {a__incr/1,a__oddNs/0,a__pairNs/0,a__repItems/1,a__tail/1,a__take/2,a__zip/2,mark/1} / {0/0,cons/2,incr/1
            ,nil/0,oddNs/0,pair/2,pairNs/0,repItems/1,s/1,tail/1,take/2,zip/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__incr,a__oddNs,a__pairNs,a__repItems,a__tail,a__take
            ,a__zip,mark} and constructors {0,cons,incr,nil,oddNs,pair,pairNs,repItems,s,tail,take,zip}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          a__incr#(X) -> c_1()
          a__incr#(cons(X,XS)) -> c_2(mark#(X))
          a__oddNs#() -> c_3(a__incr#(a__pairNs()),a__pairNs#())
          a__oddNs#() -> c_4()
          a__pairNs#() -> c_5()
          a__pairNs#() -> c_6()
          a__repItems#(X) -> c_7()
          a__repItems#(cons(X,XS)) -> c_8(mark#(X))
          a__repItems#(nil()) -> c_9()
          a__tail#(X) -> c_10()
          a__tail#(cons(X,XS)) -> c_11(mark#(XS))
          a__take#(X1,X2) -> c_12()
          a__take#(0(),XS) -> c_13()
          a__take#(s(N),cons(X,XS)) -> c_14(mark#(X))
          a__zip#(X,nil()) -> c_15()
          a__zip#(X1,X2) -> c_16()
          a__zip#(cons(X,XS),cons(Y,YS)) -> c_17(mark#(X),mark#(Y))
          a__zip#(nil(),XS) -> c_18()
          mark#(0()) -> c_19()
          mark#(cons(X1,X2)) -> c_20(mark#(X1))
          mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X))
          mark#(nil()) -> c_22()
          mark#(oddNs()) -> c_23(a__oddNs#())
          mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2))
          mark#(pairNs()) -> c_25(a__pairNs#())
          mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X))
          mark#(s(X)) -> c_27(mark#(X))
          mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X))
          mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
          mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            a__incr#(X) -> c_1()
            a__incr#(cons(X,XS)) -> c_2(mark#(X))
            a__oddNs#() -> c_3(a__incr#(a__pairNs()),a__pairNs#())
            a__oddNs#() -> c_4()
            a__pairNs#() -> c_5()
            a__pairNs#() -> c_6()
            a__repItems#(X) -> c_7()
            a__repItems#(cons(X,XS)) -> c_8(mark#(X))
            a__repItems#(nil()) -> c_9()
            a__tail#(X) -> c_10()
            a__tail#(cons(X,XS)) -> c_11(mark#(XS))
            a__take#(X1,X2) -> c_12()
            a__take#(0(),XS) -> c_13()
            a__take#(s(N),cons(X,XS)) -> c_14(mark#(X))
            a__zip#(X,nil()) -> c_15()
            a__zip#(X1,X2) -> c_16()
            a__zip#(cons(X,XS),cons(Y,YS)) -> c_17(mark#(X),mark#(Y))
            a__zip#(nil(),XS) -> c_18()
            mark#(0()) -> c_19()
            mark#(cons(X1,X2)) -> c_20(mark#(X1))
            mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X))
            mark#(nil()) -> c_22()
            mark#(oddNs()) -> c_23(a__oddNs#())
            mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2))
            mark#(pairNs()) -> c_25(a__pairNs#())
            mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X))
            mark#(s(X)) -> c_27(mark#(X))
            mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X))
            mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
            mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
        - Weak TRS:
            a__incr(X) -> incr(X)
            a__incr(cons(X,XS)) -> cons(s(mark(X)),incr(XS))
            a__oddNs() -> a__incr(a__pairNs())
            a__oddNs() -> oddNs()
            a__pairNs() -> cons(0(),incr(oddNs()))
            a__pairNs() -> pairNs()
            a__repItems(X) -> repItems(X)
            a__repItems(cons(X,XS)) -> cons(mark(X),cons(X,repItems(XS)))
            a__repItems(nil()) -> nil()
            a__tail(X) -> tail(X)
            a__tail(cons(X,XS)) -> mark(XS)
            a__take(X1,X2) -> take(X1,X2)
            a__take(0(),XS) -> nil()
            a__take(s(N),cons(X,XS)) -> cons(mark(X),take(N,XS))
            a__zip(X,nil()) -> nil()
            a__zip(X1,X2) -> zip(X1,X2)
            a__zip(cons(X,XS),cons(Y,YS)) -> cons(pair(mark(X),mark(Y)),zip(XS,YS))
            a__zip(nil(),XS) -> nil()
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(incr(X)) -> a__incr(mark(X))
            mark(nil()) -> nil()
            mark(oddNs()) -> a__oddNs()
            mark(pair(X1,X2)) -> pair(mark(X1),mark(X2))
            mark(pairNs()) -> a__pairNs()
            mark(repItems(X)) -> a__repItems(mark(X))
            mark(s(X)) -> s(mark(X))
            mark(tail(X)) -> a__tail(mark(X))
            mark(take(X1,X2)) -> a__take(mark(X1),mark(X2))
            mark(zip(X1,X2)) -> a__zip(mark(X1),mark(X2))
        - Signature:
            {a__incr/1,a__oddNs/0,a__pairNs/0,a__repItems/1,a__tail/1,a__take/2,a__zip/2,mark/1,a__incr#/1,a__oddNs#/0
            ,a__pairNs#/0,a__repItems#/1,a__tail#/1,a__take#/2,a__zip#/2,mark#/1} / {0/0,cons/2,incr/1,nil/0,oddNs/0
            ,pair/2,pairNs/0,repItems/1,s/1,tail/1,take/2,zip/2,c_1/0,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/0,c_8/1,c_9/0
            ,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/0,c_16/0,c_17/2,c_18/0,c_19/0,c_20/1,c_21/2,c_22/0,c_23/1,c_24/2
            ,c_25/1,c_26/2,c_27/1,c_28/2,c_29/3,c_30/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__incr#,a__oddNs#,a__pairNs#,a__repItems#,a__tail#
            ,a__take#,a__zip#,mark#} and constructors {0,cons,incr,nil,oddNs,pair,pairNs,repItems,s,tail,take,zip}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,4,5,6,7,9,10,12,13,15,16,18,19,22}
        by application of
          Pre({1,4,5,6,7,9,10,12,13,15,16,18,19,22}) = {2,3,8,11,14,17,20,21,23,24,25,26,27,28,29,30}.
        Here rules are labelled as follows:
          1: a__incr#(X) -> c_1()
          2: a__incr#(cons(X,XS)) -> c_2(mark#(X))
          3: a__oddNs#() -> c_3(a__incr#(a__pairNs()),a__pairNs#())
          4: a__oddNs#() -> c_4()
          5: a__pairNs#() -> c_5()
          6: a__pairNs#() -> c_6()
          7: a__repItems#(X) -> c_7()
          8: a__repItems#(cons(X,XS)) -> c_8(mark#(X))
          9: a__repItems#(nil()) -> c_9()
          10: a__tail#(X) -> c_10()
          11: a__tail#(cons(X,XS)) -> c_11(mark#(XS))
          12: a__take#(X1,X2) -> c_12()
          13: a__take#(0(),XS) -> c_13()
          14: a__take#(s(N),cons(X,XS)) -> c_14(mark#(X))
          15: a__zip#(X,nil()) -> c_15()
          16: a__zip#(X1,X2) -> c_16()
          17: a__zip#(cons(X,XS),cons(Y,YS)) -> c_17(mark#(X),mark#(Y))
          18: a__zip#(nil(),XS) -> c_18()
          19: mark#(0()) -> c_19()
          20: mark#(cons(X1,X2)) -> c_20(mark#(X1))
          21: mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X))
          22: mark#(nil()) -> c_22()
          23: mark#(oddNs()) -> c_23(a__oddNs#())
          24: mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2))
          25: mark#(pairNs()) -> c_25(a__pairNs#())
          26: mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X))
          27: mark#(s(X)) -> c_27(mark#(X))
          28: mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X))
          29: mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
          30: mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            a__incr#(cons(X,XS)) -> c_2(mark#(X))
            a__oddNs#() -> c_3(a__incr#(a__pairNs()),a__pairNs#())
            a__repItems#(cons(X,XS)) -> c_8(mark#(X))
            a__tail#(cons(X,XS)) -> c_11(mark#(XS))
            a__take#(s(N),cons(X,XS)) -> c_14(mark#(X))
            a__zip#(cons(X,XS),cons(Y,YS)) -> c_17(mark#(X),mark#(Y))
            mark#(cons(X1,X2)) -> c_20(mark#(X1))
            mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X))
            mark#(oddNs()) -> c_23(a__oddNs#())
            mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2))
            mark#(pairNs()) -> c_25(a__pairNs#())
            mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X))
            mark#(s(X)) -> c_27(mark#(X))
            mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X))
            mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
            mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
        - Weak DPs:
            a__incr#(X) -> c_1()
            a__oddNs#() -> c_4()
            a__pairNs#() -> c_5()
            a__pairNs#() -> c_6()
            a__repItems#(X) -> c_7()
            a__repItems#(nil()) -> c_9()
            a__tail#(X) -> c_10()
            a__take#(X1,X2) -> c_12()
            a__take#(0(),XS) -> c_13()
            a__zip#(X,nil()) -> c_15()
            a__zip#(X1,X2) -> c_16()
            a__zip#(nil(),XS) -> c_18()
            mark#(0()) -> c_19()
            mark#(nil()) -> c_22()
        - Weak TRS:
            a__incr(X) -> incr(X)
            a__incr(cons(X,XS)) -> cons(s(mark(X)),incr(XS))
            a__oddNs() -> a__incr(a__pairNs())
            a__oddNs() -> oddNs()
            a__pairNs() -> cons(0(),incr(oddNs()))
            a__pairNs() -> pairNs()
            a__repItems(X) -> repItems(X)
            a__repItems(cons(X,XS)) -> cons(mark(X),cons(X,repItems(XS)))
            a__repItems(nil()) -> nil()
            a__tail(X) -> tail(X)
            a__tail(cons(X,XS)) -> mark(XS)
            a__take(X1,X2) -> take(X1,X2)
            a__take(0(),XS) -> nil()
            a__take(s(N),cons(X,XS)) -> cons(mark(X),take(N,XS))
            a__zip(X,nil()) -> nil()
            a__zip(X1,X2) -> zip(X1,X2)
            a__zip(cons(X,XS),cons(Y,YS)) -> cons(pair(mark(X),mark(Y)),zip(XS,YS))
            a__zip(nil(),XS) -> nil()
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(incr(X)) -> a__incr(mark(X))
            mark(nil()) -> nil()
            mark(oddNs()) -> a__oddNs()
            mark(pair(X1,X2)) -> pair(mark(X1),mark(X2))
            mark(pairNs()) -> a__pairNs()
            mark(repItems(X)) -> a__repItems(mark(X))
            mark(s(X)) -> s(mark(X))
            mark(tail(X)) -> a__tail(mark(X))
            mark(take(X1,X2)) -> a__take(mark(X1),mark(X2))
            mark(zip(X1,X2)) -> a__zip(mark(X1),mark(X2))
        - Signature:
            {a__incr/1,a__oddNs/0,a__pairNs/0,a__repItems/1,a__tail/1,a__take/2,a__zip/2,mark/1,a__incr#/1,a__oddNs#/0
            ,a__pairNs#/0,a__repItems#/1,a__tail#/1,a__take#/2,a__zip#/2,mark#/1} / {0/0,cons/2,incr/1,nil/0,oddNs/0
            ,pair/2,pairNs/0,repItems/1,s/1,tail/1,take/2,zip/2,c_1/0,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/0,c_8/1,c_9/0
            ,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/0,c_16/0,c_17/2,c_18/0,c_19/0,c_20/1,c_21/2,c_22/0,c_23/1,c_24/2
            ,c_25/1,c_26/2,c_27/1,c_28/2,c_29/3,c_30/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__incr#,a__oddNs#,a__pairNs#,a__repItems#,a__tail#
            ,a__take#,a__zip#,mark#} and constructors {0,cons,incr,nil,oddNs,pair,pairNs,repItems,s,tail,take,zip}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {11}
        by application of
          Pre({11}) = {1,3,4,5,6,7,8,10,12,13,14,15,16}.
        Here rules are labelled as follows:
          1: a__incr#(cons(X,XS)) -> c_2(mark#(X))
          2: a__oddNs#() -> c_3(a__incr#(a__pairNs()),a__pairNs#())
          3: a__repItems#(cons(X,XS)) -> c_8(mark#(X))
          4: a__tail#(cons(X,XS)) -> c_11(mark#(XS))
          5: a__take#(s(N),cons(X,XS)) -> c_14(mark#(X))
          6: a__zip#(cons(X,XS),cons(Y,YS)) -> c_17(mark#(X),mark#(Y))
          7: mark#(cons(X1,X2)) -> c_20(mark#(X1))
          8: mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X))
          9: mark#(oddNs()) -> c_23(a__oddNs#())
          10: mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2))
          11: mark#(pairNs()) -> c_25(a__pairNs#())
          12: mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X))
          13: mark#(s(X)) -> c_27(mark#(X))
          14: mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X))
          15: mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
          16: mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
          17: a__incr#(X) -> c_1()
          18: a__oddNs#() -> c_4()
          19: a__pairNs#() -> c_5()
          20: a__pairNs#() -> c_6()
          21: a__repItems#(X) -> c_7()
          22: a__repItems#(nil()) -> c_9()
          23: a__tail#(X) -> c_10()
          24: a__take#(X1,X2) -> c_12()
          25: a__take#(0(),XS) -> c_13()
          26: a__zip#(X,nil()) -> c_15()
          27: a__zip#(X1,X2) -> c_16()
          28: a__zip#(nil(),XS) -> c_18()
          29: mark#(0()) -> c_19()
          30: mark#(nil()) -> c_22()
* Step 4: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            a__incr#(cons(X,XS)) -> c_2(mark#(X))
            a__oddNs#() -> c_3(a__incr#(a__pairNs()),a__pairNs#())
            a__repItems#(cons(X,XS)) -> c_8(mark#(X))
            a__tail#(cons(X,XS)) -> c_11(mark#(XS))
            a__take#(s(N),cons(X,XS)) -> c_14(mark#(X))
            a__zip#(cons(X,XS),cons(Y,YS)) -> c_17(mark#(X),mark#(Y))
            mark#(cons(X1,X2)) -> c_20(mark#(X1))
            mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X))
            mark#(oddNs()) -> c_23(a__oddNs#())
            mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2))
            mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X))
            mark#(s(X)) -> c_27(mark#(X))
            mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X))
            mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
            mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
        - Weak DPs:
            a__incr#(X) -> c_1()
            a__oddNs#() -> c_4()
            a__pairNs#() -> c_5()
            a__pairNs#() -> c_6()
            a__repItems#(X) -> c_7()
            a__repItems#(nil()) -> c_9()
            a__tail#(X) -> c_10()
            a__take#(X1,X2) -> c_12()
            a__take#(0(),XS) -> c_13()
            a__zip#(X,nil()) -> c_15()
            a__zip#(X1,X2) -> c_16()
            a__zip#(nil(),XS) -> c_18()
            mark#(0()) -> c_19()
            mark#(nil()) -> c_22()
            mark#(pairNs()) -> c_25(a__pairNs#())
        - Weak TRS:
            a__incr(X) -> incr(X)
            a__incr(cons(X,XS)) -> cons(s(mark(X)),incr(XS))
            a__oddNs() -> a__incr(a__pairNs())
            a__oddNs() -> oddNs()
            a__pairNs() -> cons(0(),incr(oddNs()))
            a__pairNs() -> pairNs()
            a__repItems(X) -> repItems(X)
            a__repItems(cons(X,XS)) -> cons(mark(X),cons(X,repItems(XS)))
            a__repItems(nil()) -> nil()
            a__tail(X) -> tail(X)
            a__tail(cons(X,XS)) -> mark(XS)
            a__take(X1,X2) -> take(X1,X2)
            a__take(0(),XS) -> nil()
            a__take(s(N),cons(X,XS)) -> cons(mark(X),take(N,XS))
            a__zip(X,nil()) -> nil()
            a__zip(X1,X2) -> zip(X1,X2)
            a__zip(cons(X,XS),cons(Y,YS)) -> cons(pair(mark(X),mark(Y)),zip(XS,YS))
            a__zip(nil(),XS) -> nil()
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(incr(X)) -> a__incr(mark(X))
            mark(nil()) -> nil()
            mark(oddNs()) -> a__oddNs()
            mark(pair(X1,X2)) -> pair(mark(X1),mark(X2))
            mark(pairNs()) -> a__pairNs()
            mark(repItems(X)) -> a__repItems(mark(X))
            mark(s(X)) -> s(mark(X))
            mark(tail(X)) -> a__tail(mark(X))
            mark(take(X1,X2)) -> a__take(mark(X1),mark(X2))
            mark(zip(X1,X2)) -> a__zip(mark(X1),mark(X2))
        - Signature:
            {a__incr/1,a__oddNs/0,a__pairNs/0,a__repItems/1,a__tail/1,a__take/2,a__zip/2,mark/1,a__incr#/1,a__oddNs#/0
            ,a__pairNs#/0,a__repItems#/1,a__tail#/1,a__take#/2,a__zip#/2,mark#/1} / {0/0,cons/2,incr/1,nil/0,oddNs/0
            ,pair/2,pairNs/0,repItems/1,s/1,tail/1,take/2,zip/2,c_1/0,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/0,c_8/1,c_9/0
            ,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/0,c_16/0,c_17/2,c_18/0,c_19/0,c_20/1,c_21/2,c_22/0,c_23/1,c_24/2
            ,c_25/1,c_26/2,c_27/1,c_28/2,c_29/3,c_30/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__incr#,a__oddNs#,a__pairNs#,a__repItems#,a__tail#
            ,a__take#,a__zip#,mark#} and constructors {0,cons,incr,nil,oddNs,pair,pairNs,repItems,s,tail,take,zip}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:a__incr#(cons(X,XS)) -> c_2(mark#(X))
             -->_1 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 mark#(nil()) -> c_22():29
             -->_1 mark#(0()) -> c_19():28
          
          2:S:a__oddNs#() -> c_3(a__incr#(a__pairNs()),a__pairNs#())
             -->_2 a__pairNs#() -> c_6():19
             -->_2 a__pairNs#() -> c_5():18
             -->_1 a__incr#(X) -> c_1():16
             -->_1 a__incr#(cons(X,XS)) -> c_2(mark#(X)):1
          
          3:S:a__repItems#(cons(X,XS)) -> c_8(mark#(X))
             -->_1 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 mark#(nil()) -> c_22():29
             -->_1 mark#(0()) -> c_19():28
          
          4:S:a__tail#(cons(X,XS)) -> c_11(mark#(XS))
             -->_1 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 mark#(nil()) -> c_22():29
             -->_1 mark#(0()) -> c_19():28
          
          5:S:a__take#(s(N),cons(X,XS)) -> c_14(mark#(X))
             -->_1 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 mark#(nil()) -> c_22():29
             -->_1 mark#(0()) -> c_19():28
          
          6:S:a__zip#(cons(X,XS),cons(Y,YS)) -> c_17(mark#(X),mark#(Y))
             -->_2 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_1 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_2 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_2 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_2 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_2 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_2 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_2 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_2 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_2 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_2 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_2 mark#(nil()) -> c_22():29
             -->_1 mark#(nil()) -> c_22():29
             -->_2 mark#(0()) -> c_19():28
             -->_1 mark#(0()) -> c_19():28
          
          7:S:mark#(cons(X1,X2)) -> c_20(mark#(X1))
             -->_1 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(nil()) -> c_22():29
             -->_1 mark#(0()) -> c_19():28
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
          
          8:S:mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X))
             -->_2 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_2 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_2 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_2 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_2 mark#(s(X)) -> c_27(mark#(X)):12
             -->_2 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_2 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_2 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_2 mark#(nil()) -> c_22():29
             -->_2 mark#(0()) -> c_19():28
             -->_1 a__incr#(X) -> c_1():16
             -->_2 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_2 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 a__incr#(cons(X,XS)) -> c_2(mark#(X)):1
          
          9:S:mark#(oddNs()) -> c_23(a__oddNs#())
             -->_1 a__oddNs#() -> c_4():17
             -->_1 a__oddNs#() -> c_3(a__incr#(a__pairNs()),a__pairNs#()):2
          
          10:S:mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2))
             -->_2 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_1 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_2 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_2 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_2 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_2 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_2 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_2 mark#(nil()) -> c_22():29
             -->_1 mark#(nil()) -> c_22():29
             -->_2 mark#(0()) -> c_19():28
             -->_1 mark#(0()) -> c_19():28
             -->_2 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_2 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_2 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_2 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
          
          11:S:mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X))
             -->_2 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_2 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_2 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_2 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_2 mark#(s(X)) -> c_27(mark#(X)):12
             -->_2 mark#(nil()) -> c_22():29
             -->_2 mark#(0()) -> c_19():28
             -->_1 a__repItems#(nil()) -> c_9():21
             -->_1 a__repItems#(X) -> c_7():20
             -->_2 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_2 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_2 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_2 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_2 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 a__repItems#(cons(X,XS)) -> c_8(mark#(X)):3
          
          12:S:mark#(s(X)) -> c_27(mark#(X))
             -->_1 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(nil()) -> c_22():29
             -->_1 mark#(0()) -> c_19():28
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
          
          13:S:mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X))
             -->_2 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_2 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_2 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_2 mark#(nil()) -> c_22():29
             -->_2 mark#(0()) -> c_19():28
             -->_1 a__tail#(X) -> c_10():22
             -->_2 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_2 mark#(s(X)) -> c_27(mark#(X)):12
             -->_2 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_2 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_2 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_2 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_2 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 a__tail#(cons(X,XS)) -> c_11(mark#(XS)):4
          
          14:S:mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
             -->_3 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_2 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_3 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_2 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_3 mark#(nil()) -> c_22():29
             -->_2 mark#(nil()) -> c_22():29
             -->_3 mark#(0()) -> c_19():28
             -->_2 mark#(0()) -> c_19():28
             -->_1 a__take#(0(),XS) -> c_13():24
             -->_1 a__take#(X1,X2) -> c_12():23
             -->_3 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_2 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_3 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_2 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_3 mark#(s(X)) -> c_27(mark#(X)):12
             -->_2 mark#(s(X)) -> c_27(mark#(X)):12
             -->_3 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_2 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_3 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_2 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_3 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_2 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_3 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_2 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_3 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_2 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 a__take#(s(N),cons(X,XS)) -> c_14(mark#(X)):5
          
          15:S:mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
             -->_3 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_2 mark#(pairNs()) -> c_25(a__pairNs#()):30
             -->_3 mark#(nil()) -> c_22():29
             -->_2 mark#(nil()) -> c_22():29
             -->_3 mark#(0()) -> c_19():28
             -->_2 mark#(0()) -> c_19():28
             -->_1 a__zip#(nil(),XS) -> c_18():27
             -->_1 a__zip#(X1,X2) -> c_16():26
             -->_1 a__zip#(X,nil()) -> c_15():25
             -->_3 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_2 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_3 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_2 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_3 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_2 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_3 mark#(s(X)) -> c_27(mark#(X)):12
             -->_2 mark#(s(X)) -> c_27(mark#(X)):12
             -->_3 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_2 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_3 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_2 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_3 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_2 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_3 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_2 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_3 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_2 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 a__zip#(cons(X,XS),cons(Y,YS)) -> c_17(mark#(X),mark#(Y)):6
          
          16:W:a__incr#(X) -> c_1()
             
          
          17:W:a__oddNs#() -> c_4()
             
          
          18:W:a__pairNs#() -> c_5()
             
          
          19:W:a__pairNs#() -> c_6()
             
          
          20:W:a__repItems#(X) -> c_7()
             
          
          21:W:a__repItems#(nil()) -> c_9()
             
          
          22:W:a__tail#(X) -> c_10()
             
          
          23:W:a__take#(X1,X2) -> c_12()
             
          
          24:W:a__take#(0(),XS) -> c_13()
             
          
          25:W:a__zip#(X,nil()) -> c_15()
             
          
          26:W:a__zip#(X1,X2) -> c_16()
             
          
          27:W:a__zip#(nil(),XS) -> c_18()
             
          
          28:W:mark#(0()) -> c_19()
             
          
          29:W:mark#(nil()) -> c_22()
             
          
          30:W:mark#(pairNs()) -> c_25(a__pairNs#())
             -->_1 a__pairNs#() -> c_6():19
             -->_1 a__pairNs#() -> c_5():18
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          16: a__incr#(X) -> c_1()
          17: a__oddNs#() -> c_4()
          20: a__repItems#(X) -> c_7()
          21: a__repItems#(nil()) -> c_9()
          22: a__tail#(X) -> c_10()
          23: a__take#(X1,X2) -> c_12()
          24: a__take#(0(),XS) -> c_13()
          25: a__zip#(X,nil()) -> c_15()
          26: a__zip#(X1,X2) -> c_16()
          27: a__zip#(nil(),XS) -> c_18()
          28: mark#(0()) -> c_19()
          29: mark#(nil()) -> c_22()
          30: mark#(pairNs()) -> c_25(a__pairNs#())
          18: a__pairNs#() -> c_5()
          19: a__pairNs#() -> c_6()
* Step 5: SimplifyRHS MAYBE
    + Considered Problem:
        - Strict DPs:
            a__incr#(cons(X,XS)) -> c_2(mark#(X))
            a__oddNs#() -> c_3(a__incr#(a__pairNs()),a__pairNs#())
            a__repItems#(cons(X,XS)) -> c_8(mark#(X))
            a__tail#(cons(X,XS)) -> c_11(mark#(XS))
            a__take#(s(N),cons(X,XS)) -> c_14(mark#(X))
            a__zip#(cons(X,XS),cons(Y,YS)) -> c_17(mark#(X),mark#(Y))
            mark#(cons(X1,X2)) -> c_20(mark#(X1))
            mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X))
            mark#(oddNs()) -> c_23(a__oddNs#())
            mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2))
            mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X))
            mark#(s(X)) -> c_27(mark#(X))
            mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X))
            mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
            mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
        - Weak TRS:
            a__incr(X) -> incr(X)
            a__incr(cons(X,XS)) -> cons(s(mark(X)),incr(XS))
            a__oddNs() -> a__incr(a__pairNs())
            a__oddNs() -> oddNs()
            a__pairNs() -> cons(0(),incr(oddNs()))
            a__pairNs() -> pairNs()
            a__repItems(X) -> repItems(X)
            a__repItems(cons(X,XS)) -> cons(mark(X),cons(X,repItems(XS)))
            a__repItems(nil()) -> nil()
            a__tail(X) -> tail(X)
            a__tail(cons(X,XS)) -> mark(XS)
            a__take(X1,X2) -> take(X1,X2)
            a__take(0(),XS) -> nil()
            a__take(s(N),cons(X,XS)) -> cons(mark(X),take(N,XS))
            a__zip(X,nil()) -> nil()
            a__zip(X1,X2) -> zip(X1,X2)
            a__zip(cons(X,XS),cons(Y,YS)) -> cons(pair(mark(X),mark(Y)),zip(XS,YS))
            a__zip(nil(),XS) -> nil()
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(incr(X)) -> a__incr(mark(X))
            mark(nil()) -> nil()
            mark(oddNs()) -> a__oddNs()
            mark(pair(X1,X2)) -> pair(mark(X1),mark(X2))
            mark(pairNs()) -> a__pairNs()
            mark(repItems(X)) -> a__repItems(mark(X))
            mark(s(X)) -> s(mark(X))
            mark(tail(X)) -> a__tail(mark(X))
            mark(take(X1,X2)) -> a__take(mark(X1),mark(X2))
            mark(zip(X1,X2)) -> a__zip(mark(X1),mark(X2))
        - Signature:
            {a__incr/1,a__oddNs/0,a__pairNs/0,a__repItems/1,a__tail/1,a__take/2,a__zip/2,mark/1,a__incr#/1,a__oddNs#/0
            ,a__pairNs#/0,a__repItems#/1,a__tail#/1,a__take#/2,a__zip#/2,mark#/1} / {0/0,cons/2,incr/1,nil/0,oddNs/0
            ,pair/2,pairNs/0,repItems/1,s/1,tail/1,take/2,zip/2,c_1/0,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/0,c_8/1,c_9/0
            ,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/0,c_16/0,c_17/2,c_18/0,c_19/0,c_20/1,c_21/2,c_22/0,c_23/1,c_24/2
            ,c_25/1,c_26/2,c_27/1,c_28/2,c_29/3,c_30/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__incr#,a__oddNs#,a__pairNs#,a__repItems#,a__tail#
            ,a__take#,a__zip#,mark#} and constructors {0,cons,incr,nil,oddNs,pair,pairNs,repItems,s,tail,take,zip}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:a__incr#(cons(X,XS)) -> c_2(mark#(X))
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
          
          2:S:a__oddNs#() -> c_3(a__incr#(a__pairNs()),a__pairNs#())
             -->_1 a__incr#(cons(X,XS)) -> c_2(mark#(X)):1
          
          3:S:a__repItems#(cons(X,XS)) -> c_8(mark#(X))
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
          
          4:S:a__tail#(cons(X,XS)) -> c_11(mark#(XS))
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
          
          5:S:a__take#(s(N),cons(X,XS)) -> c_14(mark#(X))
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
          
          6:S:a__zip#(cons(X,XS),cons(Y,YS)) -> c_17(mark#(X),mark#(Y))
             -->_2 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_2 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_2 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_2 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_2 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_2 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_2 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_2 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_2 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
          
          7:S:mark#(cons(X1,X2)) -> c_20(mark#(X1))
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
          
          8:S:mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X))
             -->_2 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_2 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_2 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_2 mark#(s(X)) -> c_27(mark#(X)):12
             -->_2 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_2 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_2 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_2 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_2 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 a__incr#(cons(X,XS)) -> c_2(mark#(X)):1
          
          9:S:mark#(oddNs()) -> c_23(a__oddNs#())
             -->_1 a__oddNs#() -> c_3(a__incr#(a__pairNs()),a__pairNs#()):2
          
          10:S:mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2))
             -->_2 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_2 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_2 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_2 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_2 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_2 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_2 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_2 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_2 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
          
          11:S:mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X))
             -->_2 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_2 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_2 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_2 mark#(s(X)) -> c_27(mark#(X)):12
             -->_2 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_2 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_2 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_2 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_2 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 a__repItems#(cons(X,XS)) -> c_8(mark#(X)):3
          
          12:S:mark#(s(X)) -> c_27(mark#(X))
             -->_1 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_1 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_1 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_1 mark#(s(X)) -> c_27(mark#(X)):12
             -->_1 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_1 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_1 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_1 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_1 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
          
          13:S:mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X))
             -->_2 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_2 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_2 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_2 mark#(s(X)) -> c_27(mark#(X)):12
             -->_2 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_2 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_2 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_2 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_2 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 a__tail#(cons(X,XS)) -> c_11(mark#(XS)):4
          
          14:S:mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
             -->_3 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_2 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_3 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_2 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_3 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_2 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_3 mark#(s(X)) -> c_27(mark#(X)):12
             -->_2 mark#(s(X)) -> c_27(mark#(X)):12
             -->_3 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_2 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_3 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_2 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_3 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_2 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_3 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_2 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_3 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_2 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 a__take#(s(N),cons(X,XS)) -> c_14(mark#(X)):5
          
          15:S:mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
             -->_3 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_2 mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):15
             -->_3 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_2 mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):14
             -->_3 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_2 mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X)):13
             -->_3 mark#(s(X)) -> c_27(mark#(X)):12
             -->_2 mark#(s(X)) -> c_27(mark#(X)):12
             -->_3 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_2 mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X)):11
             -->_3 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_2 mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2)):10
             -->_3 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_2 mark#(oddNs()) -> c_23(a__oddNs#()):9
             -->_3 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_2 mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X)):8
             -->_3 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_2 mark#(cons(X1,X2)) -> c_20(mark#(X1)):7
             -->_1 a__zip#(cons(X,XS),cons(Y,YS)) -> c_17(mark#(X),mark#(Y)):6
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          a__oddNs#() -> c_3(a__incr#(a__pairNs()))
* Step 6: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          a__incr#(cons(X,XS)) -> c_2(mark#(X))
          a__oddNs#() -> c_3(a__incr#(a__pairNs()))
          a__repItems#(cons(X,XS)) -> c_8(mark#(X))
          a__tail#(cons(X,XS)) -> c_11(mark#(XS))
          a__take#(s(N),cons(X,XS)) -> c_14(mark#(X))
          a__zip#(cons(X,XS),cons(Y,YS)) -> c_17(mark#(X),mark#(Y))
          mark#(cons(X1,X2)) -> c_20(mark#(X1))
          mark#(incr(X)) -> c_21(a__incr#(mark(X)),mark#(X))
          mark#(oddNs()) -> c_23(a__oddNs#())
          mark#(pair(X1,X2)) -> c_24(mark#(X1),mark#(X2))
          mark#(repItems(X)) -> c_26(a__repItems#(mark(X)),mark#(X))
          mark#(s(X)) -> c_27(mark#(X))
          mark#(tail(X)) -> c_28(a__tail#(mark(X)),mark#(X))
          mark#(take(X1,X2)) -> c_29(a__take#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
          mark#(zip(X1,X2)) -> c_30(a__zip#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
      - Weak TRS:
          a__incr(X) -> incr(X)
          a__incr(cons(X,XS)) -> cons(s(mark(X)),incr(XS))
          a__oddNs() -> a__incr(a__pairNs())
          a__oddNs() -> oddNs()
          a__pairNs() -> cons(0(),incr(oddNs()))
          a__pairNs() -> pairNs()
          a__repItems(X) -> repItems(X)
          a__repItems(cons(X,XS)) -> cons(mark(X),cons(X,repItems(XS)))
          a__repItems(nil()) -> nil()
          a__tail(X) -> tail(X)
          a__tail(cons(X,XS)) -> mark(XS)
          a__take(X1,X2) -> take(X1,X2)
          a__take(0(),XS) -> nil()
          a__take(s(N),cons(X,XS)) -> cons(mark(X),take(N,XS))
          a__zip(X,nil()) -> nil()
          a__zip(X1,X2) -> zip(X1,X2)
          a__zip(cons(X,XS),cons(Y,YS)) -> cons(pair(mark(X),mark(Y)),zip(XS,YS))
          a__zip(nil(),XS) -> nil()
          mark(0()) -> 0()
          mark(cons(X1,X2)) -> cons(mark(X1),X2)
          mark(incr(X)) -> a__incr(mark(X))
          mark(nil()) -> nil()
          mark(oddNs()) -> a__oddNs()
          mark(pair(X1,X2)) -> pair(mark(X1),mark(X2))
          mark(pairNs()) -> a__pairNs()
          mark(repItems(X)) -> a__repItems(mark(X))
          mark(s(X)) -> s(mark(X))
          mark(tail(X)) -> a__tail(mark(X))
          mark(take(X1,X2)) -> a__take(mark(X1),mark(X2))
          mark(zip(X1,X2)) -> a__zip(mark(X1),mark(X2))
      - Signature:
          {a__incr/1,a__oddNs/0,a__pairNs/0,a__repItems/1,a__tail/1,a__take/2,a__zip/2,mark/1,a__incr#/1,a__oddNs#/0
          ,a__pairNs#/0,a__repItems#/1,a__tail#/1,a__take#/2,a__zip#/2,mark#/1} / {0/0,cons/2,incr/1,nil/0,oddNs/0
          ,pair/2,pairNs/0,repItems/1,s/1,tail/1,take/2,zip/2,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0,c_8/1,c_9/0
          ,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/0,c_16/0,c_17/2,c_18/0,c_19/0,c_20/1,c_21/2,c_22/0,c_23/1,c_24/2
          ,c_25/1,c_26/2,c_27/1,c_28/2,c_29/3,c_30/3}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {a__incr#,a__oddNs#,a__pairNs#,a__repItems#,a__tail#
          ,a__take#,a__zip#,mark#} and constructors {0,cons,incr,nil,oddNs,pair,pairNs,repItems,s,tail,take,zip}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE