WORST_CASE(?,O(n^1))
* Step 1: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1)))
            2nd(cons1(X,cons(Y,Z))) -> Y
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {2nd/1,activate/1,from/1,s/1} / {cons/2,cons1/2,n__from/1,n__s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,s} and constructors {cons,cons1,n__from
            ,n__s}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          2nd :: [A(14)] -(14)-> A(0)
          activate :: [A(8)] -(5)-> A(0)
          cons :: [A(14) x A(14)] -(14)-> A(14)
          cons :: [A(0) x A(0)] -(0)-> A(0)
          cons1 :: [A(14) x A(0)] -(0)-> A(14)
          from :: [A(0)] -(3)-> A(0)
          n__from :: [A(8)] -(8)-> A(8)
          n__from :: [A(0)] -(0)-> A(0)
          n__s :: [A(8)] -(8)-> A(8)
          n__s :: [A(0)] -(0)-> A(0)
          s :: [A(0)] -(0)-> A(0)
        
        
        Cost-free Signatures used:
        --------------------------
          2nd :: [A_cf(0)] -(0)-> A_cf(0)
          activate :: [A_cf(0)] -(0)-> A_cf(0)
          cons :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          cons1 :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          from :: [A_cf(0)] -(0)-> A_cf(0)
          n__from :: [A_cf(0)] -(0)-> A_cf(0)
          n__s :: [A_cf(0)] -(0)-> A_cf(0)
          s :: [A_cf(0)] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          cons1_A :: [A(1) x A(0)] -(0)-> A(1)
          cons_A :: [A(1) x A(1)] -(1)-> A(1)
          n__from_A :: [A(0)] -(1)-> A(1)
          n__s_A :: [A(0)] -(1)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          activate(n__s(X)) -> s(activate(X))
          from(X) -> n__from(X)
        2. Weak:
          2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1)))
          2nd(cons1(X,cons(Y,Z))) -> Y
          activate(X) -> X
          activate(n__from(X)) -> from(activate(X))
          from(X) -> cons(X,n__from(n__s(X)))
          s(X) -> n__s(X)
* Step 2: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1)))
            2nd(cons1(X,cons(Y,Z))) -> Y
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            s(X) -> n__s(X)
        - Weak TRS:
            activate(n__s(X)) -> s(activate(X))
            from(X) -> n__from(X)
        - Signature:
            {2nd/1,activate/1,from/1,s/1} / {cons/2,cons1/2,n__from/1,n__s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,s} and constructors {cons,cons1,n__from
            ,n__s}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          2nd :: [A(13)] -(7)-> A(0)
          activate :: [A(0)] -(1)-> A(0)
          cons :: [A(13) x A(0)] -(13)-> A(13)
          cons :: [A(0) x A(0)] -(0)-> A(0)
          cons1 :: [A(0) x A(0)] -(0)-> A(13)
          cons1 :: [A(0) x A(0)] -(0)-> A(15)
          from :: [A(0)] -(0)-> A(0)
          n__from :: [A(0)] -(0)-> A(0)
          n__from :: [A(0)] -(0)-> A(9)
          n__from :: [A(0)] -(0)-> A(1)
          n__s :: [A(0)] -(0)-> A(0)
          n__s :: [A(0)] -(0)-> A(5)
          n__s :: [A(0)] -(0)-> A(14)
          s :: [A(0)] -(0)-> A(13)
        
        
        Cost-free Signatures used:
        --------------------------
          2nd :: [A_cf(0)] -(0)-> A_cf(0)
          activate :: [A_cf(0)] -(0)-> A_cf(0)
          cons :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          cons1 :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          from :: [A_cf(0)] -(0)-> A_cf(0)
          n__from :: [A_cf(0)] -(0)-> A_cf(0)
          n__s :: [A_cf(0)] -(0)-> A_cf(0)
          s :: [A_cf(0)] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          cons1_A :: [A(0) x A(0)] -(0)-> A(1)
          cons_A :: [A(1) x A(0)] -(1)-> A(1)
          n__from_A :: [A(0)] -(0)-> A(1)
          n__s_A :: [A(0)] -(0)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1)))
          2nd(cons1(X,cons(Y,Z))) -> Y
        2. Weak:
          activate(X) -> X
          activate(n__from(X)) -> from(activate(X))
          from(X) -> cons(X,n__from(n__s(X)))
          s(X) -> n__s(X)
* Step 3: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            s(X) -> n__s(X)
        - Weak TRS:
            2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1)))
            2nd(cons1(X,cons(Y,Z))) -> Y
            activate(n__s(X)) -> s(activate(X))
            from(X) -> n__from(X)
        - Signature:
            {2nd/1,activate/1,from/1,s/1} / {cons/2,cons1/2,n__from/1,n__s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,s} and constructors {cons,cons1,n__from
            ,n__s}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          2nd :: [A(15)] -(7)-> A(0)
          activate :: [A(15)] -(8)-> A(0)
          cons :: [A(0) x A(15)] -(15)-> A(15)
          cons :: [A(0) x A(0)] -(0)-> A(0)
          cons1 :: [A(0) x A(0)] -(0)-> A(15)
          from :: [A(0)] -(15)-> A(0)
          n__from :: [A(15)] -(15)-> A(15)
          n__from :: [A(0)] -(0)-> A(0)
          n__s :: [A(15)] -(15)-> A(15)
          n__s :: [A(0)] -(0)-> A(0)
          s :: [A(0)] -(0)-> A(0)
        
        
        Cost-free Signatures used:
        --------------------------
          2nd :: [A_cf(0)] -(0)-> A_cf(0)
          activate :: [A_cf(0)] -(0)-> A_cf(0)
          cons :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          cons1 :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          from :: [A_cf(0)] -(0)-> A_cf(0)
          n__from :: [A_cf(0)] -(0)-> A_cf(0)
          n__s :: [A_cf(0)] -(0)-> A_cf(0)
          s :: [A_cf(0)] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          cons1_A :: [A(0) x A(0)] -(0)-> A(1)
          cons_A :: [A(0) x A(1)] -(1)-> A(1)
          n__from_A :: [A(0)] -(1)-> A(1)
          n__s_A :: [A(0)] -(1)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          activate(X) -> X
        2. Weak:
          activate(n__from(X)) -> from(activate(X))
          from(X) -> cons(X,n__from(n__s(X)))
          s(X) -> n__s(X)
* Step 4: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(n__from(X)) -> from(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            s(X) -> n__s(X)
        - Weak TRS:
            2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1)))
            2nd(cons1(X,cons(Y,Z))) -> Y
            activate(X) -> X
            activate(n__s(X)) -> s(activate(X))
            from(X) -> n__from(X)
        - Signature:
            {2nd/1,activate/1,from/1,s/1} / {cons/2,cons1/2,n__from/1,n__s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,s} and constructors {cons,cons1,n__from
            ,n__s}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          2nd :: [A(15)] -(9)-> A(0)
          activate :: [A(11)] -(15)-> A(0)
          cons :: [A(0) x A(15)] -(15)-> A(15)
          cons :: [A(0) x A(0)] -(0)-> A(0)
          cons1 :: [A(0) x A(0)] -(0)-> A(15)
          from :: [A(0)] -(11)-> A(0)
          n__from :: [A(11)] -(11)-> A(11)
          n__from :: [A(0)] -(0)-> A(0)
          n__s :: [A(11)] -(11)-> A(11)
          n__s :: [A(0)] -(0)-> A(0)
          s :: [A(0)] -(4)-> A(0)
        
        
        Cost-free Signatures used:
        --------------------------
          2nd :: [A_cf(0)] -(0)-> A_cf(0)
          activate :: [A_cf(0)] -(0)-> A_cf(0)
          cons :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          cons1 :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          from :: [A_cf(0)] -(0)-> A_cf(0)
          n__from :: [A_cf(0)] -(0)-> A_cf(0)
          n__s :: [A_cf(0)] -(0)-> A_cf(0)
          s :: [A_cf(0)] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          cons1_A :: [A(0) x A(0)] -(0)-> A(1)
          cons_A :: [A(0) x A(1)] -(1)-> A(1)
          n__from_A :: [A(0)] -(1)-> A(1)
          n__s_A :: [A(0)] -(1)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          s(X) -> n__s(X)
        2. Weak:
          activate(n__from(X)) -> from(activate(X))
          from(X) -> cons(X,n__from(n__s(X)))
* Step 5: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(n__from(X)) -> from(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
        - Weak TRS:
            2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1)))
            2nd(cons1(X,cons(Y,Z))) -> Y
            activate(X) -> X
            activate(n__s(X)) -> s(activate(X))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {2nd/1,activate/1,from/1,s/1} / {cons/2,cons1/2,n__from/1,n__s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,s} and constructors {cons,cons1,n__from
            ,n__s}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          2nd :: [A(11)] -(13)-> A(0)
          activate :: [A(11)] -(2)-> A(0)
          cons :: [A(0) x A(11)] -(11)-> A(11)
          cons :: [A(0) x A(0)] -(0)-> A(0)
          cons1 :: [A(0) x A(0)] -(0)-> A(11)
          cons1 :: [A(0) x A(0)] -(0)-> A(13)
          from :: [A(0)] -(7)-> A(0)
          n__from :: [A(11)] -(11)-> A(11)
          n__from :: [A(0)] -(0)-> A(0)
          n__s :: [A(11)] -(11)-> A(11)
          n__s :: [A(0)] -(0)-> A(0)
          s :: [A(0)] -(1)-> A(0)
        
        
        Cost-free Signatures used:
        --------------------------
          2nd :: [A_cf(0)] -(0)-> A_cf(0)
          activate :: [A_cf(0)] -(0)-> A_cf(0)
          cons :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          cons1 :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          from :: [A_cf(0)] -(0)-> A_cf(0)
          n__from :: [A_cf(0)] -(0)-> A_cf(0)
          n__s :: [A_cf(0)] -(0)-> A_cf(0)
          s :: [A_cf(0)] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          cons1_A :: [A(0) x A(0)] -(0)-> A(1)
          cons_A :: [A(0) x A(1)] -(1)-> A(1)
          n__from_A :: [A(0)] -(1)-> A(1)
          n__s_A :: [A(0)] -(1)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          from(X) -> cons(X,n__from(n__s(X)))
        2. Weak:
          activate(n__from(X)) -> from(activate(X))
* Step 6: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(n__from(X)) -> from(activate(X))
        - Weak TRS:
            2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1)))
            2nd(cons1(X,cons(Y,Z))) -> Y
            activate(X) -> X
            activate(n__s(X)) -> s(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {2nd/1,activate/1,from/1,s/1} / {cons/2,cons1/2,n__from/1,n__s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,s} and constructors {cons,cons1,n__from
            ,n__s}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 1, araTimeout = 15, araFindStrictRules = Just 1}
    + Details:
        Signatures used:
        ----------------
          2nd :: [A(15)] -(4)-> A(0)
          activate :: [A(15)] -(0)-> A(8)
          cons :: [A(0) x A(15)] -(0)-> A(15)
          cons :: [A(0) x A(0)] -(0)-> A(0)
          cons :: [A(0) x A(8)] -(0)-> A(8)
          cons1 :: [A(0) x A(0)] -(0)-> A(15)
          from :: [A(8)] -(10)-> A(8)
          n__from :: [A(15)] -(15)-> A(15)
          n__from :: [A(8)] -(8)-> A(8)
          n__s :: [A(15)] -(0)-> A(15)
          n__s :: [A(8)] -(0)-> A(8)
          s :: [A(8)] -(0)-> A(8)
        
        
        Cost-free Signatures used:
        --------------------------
          2nd :: [A_cf(0)] -(0)-> A_cf(0)
          activate :: [A_cf(0)] -(0)-> A_cf(0)
          cons :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          cons1 :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          from :: [A_cf(0)] -(0)-> A_cf(0)
          n__from :: [A_cf(0)] -(0)-> A_cf(0)
          n__s :: [A_cf(0)] -(0)-> A_cf(0)
          s :: [A_cf(0)] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          cons1_A :: [A(0) x A(0)] -(0)-> A(1)
          cons_A :: [A(0) x A(1)] -(0)-> A(1)
          n__from_A :: [A(0)] -(1)-> A(1)
          n__s_A :: [A(0)] -(0)-> A(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          activate(n__from(X)) -> from(activate(X))
        2. Weak:
          
* Step 7: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1)))
            2nd(cons1(X,cons(Y,Z))) -> Y
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {2nd/1,activate/1,from/1,s/1} / {cons/2,cons1/2,n__from/1,n__s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,s} and constructors {cons,cons1,n__from
            ,n__s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))