MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: activate(X) -> X activate(n__fib1(X1,X2)) -> fib1(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib(N) -> sel(N,fib1(s(0()),s(0()))) fib1(X,Y) -> cons(X,n__fib1(Y,add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0(),cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) - Signature: {activate/1,add/2,fib/1,fib1/2,sel/2} / {0/0,cons/2,n__fib1/2,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,add,fib,fib1,sel} and constructors {0,cons ,n__fib1,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__fib1(X1,X2)) -> c_2(fib1#(X1,X2)) add#(0(),X) -> c_3() add#(s(X),Y) -> c_4(add#(X,Y)) fib#(N) -> c_5(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_6(add#(X,Y)) fib1#(X1,X2) -> c_7() sel#(0(),cons(X,XS)) -> c_8() sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)),activate#(XS)) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__fib1(X1,X2)) -> c_2(fib1#(X1,X2)) add#(0(),X) -> c_3() add#(s(X),Y) -> c_4(add#(X,Y)) fib#(N) -> c_5(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_6(add#(X,Y)) fib1#(X1,X2) -> c_7() sel#(0(),cons(X,XS)) -> c_8() sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)),activate#(XS)) - Weak TRS: activate(X) -> X activate(n__fib1(X1,X2)) -> fib1(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib(N) -> sel(N,fib1(s(0()),s(0()))) fib1(X,Y) -> cons(X,n__fib1(Y,add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) sel(0(),cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) - Signature: {activate/1,add/2,fib/1,fib1/2,sel/2,activate#/1,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,n__fib1/2,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,add#,fib#,fib1#,sel#} and constructors {0,cons ,n__fib1,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__fib1(X1,X2)) -> fib1(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,n__fib1(Y,add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) activate#(X) -> c_1() activate#(n__fib1(X1,X2)) -> c_2(fib1#(X1,X2)) add#(0(),X) -> c_3() add#(s(X),Y) -> c_4(add#(X,Y)) fib#(N) -> c_5(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_6(add#(X,Y)) fib1#(X1,X2) -> c_7() sel#(0(),cons(X,XS)) -> c_8() sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)),activate#(XS)) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__fib1(X1,X2)) -> c_2(fib1#(X1,X2)) add#(0(),X) -> c_3() add#(s(X),Y) -> c_4(add#(X,Y)) fib#(N) -> c_5(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_6(add#(X,Y)) fib1#(X1,X2) -> c_7() sel#(0(),cons(X,XS)) -> c_8() sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)),activate#(XS)) - Weak TRS: activate(X) -> X activate(n__fib1(X1,X2)) -> fib1(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,n__fib1(Y,add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) - Signature: {activate/1,add/2,fib/1,fib1/2,sel/2,activate#/1,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,n__fib1/2,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,add#,fib#,fib1#,sel#} and constructors {0,cons ,n__fib1,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,7,8} by application of Pre({1,3,7,8}) = {2,4,5,6,9}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: activate#(n__fib1(X1,X2)) -> c_2(fib1#(X1,X2)) 3: add#(0(),X) -> c_3() 4: add#(s(X),Y) -> c_4(add#(X,Y)) 5: fib#(N) -> c_5(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) 6: fib1#(X,Y) -> c_6(add#(X,Y)) 7: fib1#(X1,X2) -> c_7() 8: sel#(0(),cons(X,XS)) -> c_8() 9: sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)),activate#(XS)) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: activate#(n__fib1(X1,X2)) -> c_2(fib1#(X1,X2)) add#(s(X),Y) -> c_4(add#(X,Y)) fib#(N) -> c_5(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_6(add#(X,Y)) sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)),activate#(XS)) - Weak DPs: activate#(X) -> c_1() add#(0(),X) -> c_3() fib1#(X1,X2) -> c_7() sel#(0(),cons(X,XS)) -> c_8() - Weak TRS: activate(X) -> X activate(n__fib1(X1,X2)) -> fib1(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,n__fib1(Y,add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) - Signature: {activate/1,add/2,fib/1,fib1/2,sel/2,activate#/1,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,n__fib1/2,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,add#,fib#,fib1#,sel#} and constructors {0,cons ,n__fib1,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:activate#(n__fib1(X1,X2)) -> c_2(fib1#(X1,X2)) -->_1 fib1#(X,Y) -> c_6(add#(X,Y)):4 -->_1 fib1#(X1,X2) -> c_7():8 2:S:add#(s(X),Y) -> c_4(add#(X,Y)) -->_1 add#(0(),X) -> c_3():7 -->_1 add#(s(X),Y) -> c_4(add#(X,Y)):2 3:S:fib#(N) -> c_5(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) -->_1 sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)),activate#(XS)):5 -->_2 fib1#(X,Y) -> c_6(add#(X,Y)):4 -->_1 sel#(0(),cons(X,XS)) -> c_8():9 -->_2 fib1#(X1,X2) -> c_7():8 4:S:fib1#(X,Y) -> c_6(add#(X,Y)) -->_1 add#(0(),X) -> c_3():7 -->_1 add#(s(X),Y) -> c_4(add#(X,Y)):2 5:S:sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)),activate#(XS)) -->_1 sel#(0(),cons(X,XS)) -> c_8():9 -->_2 activate#(X) -> c_1():6 -->_1 sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)),activate#(XS)):5 -->_2 activate#(n__fib1(X1,X2)) -> c_2(fib1#(X1,X2)):1 6:W:activate#(X) -> c_1() 7:W:add#(0(),X) -> c_3() 8:W:fib1#(X1,X2) -> c_7() 9:W:sel#(0(),cons(X,XS)) -> c_8() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: activate#(X) -> c_1() 9: sel#(0(),cons(X,XS)) -> c_8() 8: fib1#(X1,X2) -> c_7() 7: add#(0(),X) -> c_3() * Step 5: NaturalMI MAYBE + Considered Problem: - Strict DPs: activate#(n__fib1(X1,X2)) -> c_2(fib1#(X1,X2)) add#(s(X),Y) -> c_4(add#(X,Y)) fib#(N) -> c_5(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_6(add#(X,Y)) sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)),activate#(XS)) - Weak TRS: activate(X) -> X activate(n__fib1(X1,X2)) -> fib1(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,n__fib1(Y,add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) - Signature: {activate/1,add/2,fib/1,fib1/2,sel/2,activate#/1,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,n__fib1/2,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,add#,fib#,fib1#,sel#} and constructors {0,cons ,n__fib1,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1,2}, uargs(c_6) = {1}, uargs(c_9) = {1,2} Following symbols are considered usable: {activate#,add#,fib#,fib1#,sel#} TcT has computed the following interpretation: p(0) = [4] p(activate) = [2] p(add) = [1] x2 + [0] p(cons) = [0] p(fib) = [1] x1 + [0] p(fib1) = [1] p(n__fib1) = [3] p(s) = [0] p(sel) = [1] x2 + [1] p(activate#) = [0] p(add#) = [0] p(fib#) = [8] x1 + [4] p(fib1#) = [0] p(sel#) = [0] p(c_1) = [4] p(c_2) = [8] x1 + [0] p(c_3) = [0] p(c_4) = [2] x1 + [0] p(c_5) = [1] x1 + [8] x2 + [2] p(c_6) = [1] x1 + [0] p(c_7) = [0] p(c_8) = [1] p(c_9) = [4] x1 + [8] x2 + [0] Following rules are strictly oriented: fib#(N) = [8] N + [4] > [2] = c_5(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) Following rules are (at-least) weakly oriented: activate#(n__fib1(X1,X2)) = [0] >= [0] = c_2(fib1#(X1,X2)) add#(s(X),Y) = [0] >= [0] = c_4(add#(X,Y)) fib1#(X,Y) = [0] >= [0] = c_6(add#(X,Y)) sel#(s(N),cons(X,XS)) = [0] >= [0] = c_9(sel#(N,activate(XS)),activate#(XS)) * Step 6: Failure MAYBE + Considered Problem: - Strict DPs: activate#(n__fib1(X1,X2)) -> c_2(fib1#(X1,X2)) add#(s(X),Y) -> c_4(add#(X,Y)) fib1#(X,Y) -> c_6(add#(X,Y)) sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)),activate#(XS)) - Weak DPs: fib#(N) -> c_5(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) - Weak TRS: activate(X) -> X activate(n__fib1(X1,X2)) -> fib1(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,n__fib1(Y,add(X,Y))) fib1(X1,X2) -> n__fib1(X1,X2) - Signature: {activate/1,add/2,fib/1,fib1/2,sel/2,activate#/1,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,n__fib1/2,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,add#,fib#,fib1#,sel#} and constructors {0,cons ,n__fib1,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE