MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__b()) -> b() b() -> a() b() -> n__b() f(n__a(),X,X) -> f(activate(X),b(),n__b()) - Signature: {a/0,activate/1,b/0,f/3} / {n__a/0,n__b/0} - Obligation: innermost runtime complexity wrt. defined symbols {a,activate,b,f} and constructors {n__a,n__b} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__b()) -> c_4(b#()) b#() -> c_5(a#()) b#() -> c_6() f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__b()) -> c_4(b#()) b#() -> c_5(a#()) b#() -> c_6() f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()) - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__b()) -> b() b() -> a() b() -> n__b() f(n__a(),X,X) -> f(activate(X),b(),n__b()) - Signature: {a/0,activate/1,b/0,f/3,a#/0,activate#/1,b#/0,f#/3} / {n__a/0,n__b/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0 ,c_7/3} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,b#,f#} and constructors {n__a,n__b} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__b()) -> b() b() -> a() b() -> n__b() a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__b()) -> c_4(b#()) b#() -> c_5(a#()) b#() -> c_6() f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__b()) -> c_4(b#()) b#() -> c_5(a#()) b#() -> c_6() f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()) - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__b()) -> b() b() -> a() b() -> n__b() - Signature: {a/0,activate/1,b/0,f/3,a#/0,activate#/1,b#/0,f#/3} / {n__a/0,n__b/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0 ,c_7/3} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,b#,f#} and constructors {n__a,n__b} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2,6} by application of Pre({1,2,6}) = {3,4,5,7}. Here rules are labelled as follows: 1: a#() -> c_1() 2: activate#(X) -> c_2() 3: activate#(n__a()) -> c_3(a#()) 4: activate#(n__b()) -> c_4(b#()) 5: b#() -> c_5(a#()) 6: b#() -> c_6() 7: f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()) * Step 4: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: activate#(n__a()) -> c_3(a#()) activate#(n__b()) -> c_4(b#()) b#() -> c_5(a#()) f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()) - Weak DPs: a#() -> c_1() activate#(X) -> c_2() b#() -> c_6() - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__b()) -> b() b() -> a() b() -> n__b() - Signature: {a/0,activate/1,b/0,f/3,a#/0,activate#/1,b#/0,f#/3} / {n__a/0,n__b/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0 ,c_7/3} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,b#,f#} and constructors {n__a,n__b} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3} by application of Pre({1,3}) = {2,4}. Here rules are labelled as follows: 1: activate#(n__a()) -> c_3(a#()) 2: activate#(n__b()) -> c_4(b#()) 3: b#() -> c_5(a#()) 4: f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()) 5: a#() -> c_1() 6: activate#(X) -> c_2() 7: b#() -> c_6() * Step 5: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: activate#(n__b()) -> c_4(b#()) f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()) - Weak DPs: a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) b#() -> c_5(a#()) b#() -> c_6() - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__b()) -> b() b() -> a() b() -> n__b() - Signature: {a/0,activate/1,b/0,f/3,a#/0,activate#/1,b#/0,f#/3} / {n__a/0,n__b/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0 ,c_7/3} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,b#,f#} and constructors {n__a,n__b} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2}. Here rules are labelled as follows: 1: activate#(n__b()) -> c_4(b#()) 2: f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()) 3: a#() -> c_1() 4: activate#(X) -> c_2() 5: activate#(n__a()) -> c_3(a#()) 6: b#() -> c_5(a#()) 7: b#() -> c_6() * Step 6: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()) - Weak DPs: a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__b()) -> c_4(b#()) b#() -> c_5(a#()) b#() -> c_6() - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__b()) -> b() b() -> a() b() -> n__b() - Signature: {a/0,activate/1,b/0,f/3,a#/0,activate#/1,b#/0,f#/3} / {n__a/0,n__b/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0 ,c_7/3} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,b#,f#} and constructors {n__a,n__b} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()) -->_3 b#() -> c_5(a#()):6 -->_2 activate#(n__b()) -> c_4(b#()):5 -->_2 activate#(n__a()) -> c_3(a#()):4 -->_3 b#() -> c_6():7 -->_2 activate#(X) -> c_2():3 -->_1 f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()):1 2:W:a#() -> c_1() 3:W:activate#(X) -> c_2() 4:W:activate#(n__a()) -> c_3(a#()) -->_1 a#() -> c_1():2 5:W:activate#(n__b()) -> c_4(b#()) -->_1 b#() -> c_5(a#()):6 -->_1 b#() -> c_6():7 6:W:b#() -> c_5(a#()) -->_1 a#() -> c_1():2 7:W:b#() -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: activate#(X) -> c_2() 4: activate#(n__a()) -> c_3(a#()) 5: activate#(n__b()) -> c_4(b#()) 7: b#() -> c_6() 6: b#() -> c_5(a#()) 2: a#() -> c_1() * Step 7: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()) - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__b()) -> b() b() -> a() b() -> n__b() - Signature: {a/0,activate/1,b/0,f/3,a#/0,activate#/1,b#/0,f#/3} / {n__a/0,n__b/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0 ,c_7/3} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,b#,f#} and constructors {n__a,n__b} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()) -->_1 f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b()),activate#(X),b#()):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b())) * Step 8: Failure MAYBE + Considered Problem: - Strict DPs: f#(n__a(),X,X) -> c_7(f#(activate(X),b(),n__b())) - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__b()) -> b() b() -> a() b() -> n__b() - Signature: {a/0,activate/1,b/0,f/3,a#/0,activate#/1,b#/0,f#/3} / {n__a/0,n__b/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0 ,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,b#,f#} and constructors {n__a,n__b} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE