MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            a__U11(X) -> U11(X)
            a__U11(tt()) -> a__U12(tt())
            a__U12(X) -> U12(X)
            a__U12(tt()) -> tt()
            a____(X,nil()) -> mark(X)
            a____(X1,X2) -> __(X1,X2)
            a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z)))
            a____(nil(),X) -> mark(X)
            a__isNePal(X) -> isNePal(X)
            a__isNePal(__(I,__(P,I))) -> a__U11(tt())
            mark(U11(X)) -> a__U11(mark(X))
            mark(U12(X)) -> a__U12(mark(X))
            mark(__(X1,X2)) -> a____(mark(X1),mark(X2))
            mark(isNePal(X)) -> a__isNePal(mark(X))
            mark(nil()) -> nil()
            mark(tt()) -> tt()
        - Signature:
            {a__U11/1,a__U12/1,a____/2,a__isNePal/1,mark/1} / {U11/1,U12/1,__/2,isNePal/1,nil/0,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__U11,a__U12,a____,a__isNePal
            ,mark} and constructors {U11,U12,__,isNePal,nil,tt}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          a__U11#(X) -> c_1()
          a__U11#(tt()) -> c_2(a__U12#(tt()))
          a__U12#(X) -> c_3()
          a__U12#(tt()) -> c_4()
          a____#(X,nil()) -> c_5(mark#(X))
          a____#(X1,X2) -> c_6()
          a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                  ,mark#(X)
                                  ,a____#(mark(Y),mark(Z))
                                  ,mark#(Y)
                                  ,mark#(Z))
          a____#(nil(),X) -> c_8(mark#(X))
          a__isNePal#(X) -> c_9()
          a__isNePal#(__(I,__(P,I))) -> c_10(a__U11#(tt()))
          mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X))
          mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X))
          mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
          mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X))
          mark#(nil()) -> c_15()
          mark#(tt()) -> c_16()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            a__U11#(X) -> c_1()
            a__U11#(tt()) -> c_2(a__U12#(tt()))
            a__U12#(X) -> c_3()
            a__U12#(tt()) -> c_4()
            a____#(X,nil()) -> c_5(mark#(X))
            a____#(X1,X2) -> c_6()
            a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                    ,mark#(X)
                                    ,a____#(mark(Y),mark(Z))
                                    ,mark#(Y)
                                    ,mark#(Z))
            a____#(nil(),X) -> c_8(mark#(X))
            a__isNePal#(X) -> c_9()
            a__isNePal#(__(I,__(P,I))) -> c_10(a__U11#(tt()))
            mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X))
            mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X))
            mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
            mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X))
            mark#(nil()) -> c_15()
            mark#(tt()) -> c_16()
        - Weak TRS:
            a__U11(X) -> U11(X)
            a__U11(tt()) -> a__U12(tt())
            a__U12(X) -> U12(X)
            a__U12(tt()) -> tt()
            a____(X,nil()) -> mark(X)
            a____(X1,X2) -> __(X1,X2)
            a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z)))
            a____(nil(),X) -> mark(X)
            a__isNePal(X) -> isNePal(X)
            a__isNePal(__(I,__(P,I))) -> a__U11(tt())
            mark(U11(X)) -> a__U11(mark(X))
            mark(U12(X)) -> a__U12(mark(X))
            mark(__(X1,X2)) -> a____(mark(X1),mark(X2))
            mark(isNePal(X)) -> a__isNePal(mark(X))
            mark(nil()) -> nil()
            mark(tt()) -> tt()
        - Signature:
            {a__U11/1,a__U12/1,a____/2,a__isNePal/1,mark/1,a__U11#/1,a__U12#/1,a____#/2,a__isNePal#/1,mark#/1} / {U11/1
            ,U12/1,__/2,isNePal/1,nil/0,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/5,c_8/1,c_9/0,c_10/1,c_11/2,c_12/2
            ,c_13/3,c_14/2,c_15/0,c_16/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__U11#,a__U12#,a____#,a__isNePal#
            ,mark#} and constructors {U11,U12,__,isNePal,nil,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,3,4,6,9,15,16}
        by application of
          Pre({1,3,4,6,9,15,16}) = {2,5,7,8,10,11,12,13,14}.
        Here rules are labelled as follows:
          1: a__U11#(X) -> c_1()
          2: a__U11#(tt()) -> c_2(a__U12#(tt()))
          3: a__U12#(X) -> c_3()
          4: a__U12#(tt()) -> c_4()
          5: a____#(X,nil()) -> c_5(mark#(X))
          6: a____#(X1,X2) -> c_6()
          7: a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                     ,mark#(X)
                                     ,a____#(mark(Y),mark(Z))
                                     ,mark#(Y)
                                     ,mark#(Z))
          8: a____#(nil(),X) -> c_8(mark#(X))
          9: a__isNePal#(X) -> c_9()
          10: a__isNePal#(__(I,__(P,I))) -> c_10(a__U11#(tt()))
          11: mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X))
          12: mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X))
          13: mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
          14: mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X))
          15: mark#(nil()) -> c_15()
          16: mark#(tt()) -> c_16()
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            a__U11#(tt()) -> c_2(a__U12#(tt()))
            a____#(X,nil()) -> c_5(mark#(X))
            a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                    ,mark#(X)
                                    ,a____#(mark(Y),mark(Z))
                                    ,mark#(Y)
                                    ,mark#(Z))
            a____#(nil(),X) -> c_8(mark#(X))
            a__isNePal#(__(I,__(P,I))) -> c_10(a__U11#(tt()))
            mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X))
            mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X))
            mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
            mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X))
        - Weak DPs:
            a__U11#(X) -> c_1()
            a__U12#(X) -> c_3()
            a__U12#(tt()) -> c_4()
            a____#(X1,X2) -> c_6()
            a__isNePal#(X) -> c_9()
            mark#(nil()) -> c_15()
            mark#(tt()) -> c_16()
        - Weak TRS:
            a__U11(X) -> U11(X)
            a__U11(tt()) -> a__U12(tt())
            a__U12(X) -> U12(X)
            a__U12(tt()) -> tt()
            a____(X,nil()) -> mark(X)
            a____(X1,X2) -> __(X1,X2)
            a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z)))
            a____(nil(),X) -> mark(X)
            a__isNePal(X) -> isNePal(X)
            a__isNePal(__(I,__(P,I))) -> a__U11(tt())
            mark(U11(X)) -> a__U11(mark(X))
            mark(U12(X)) -> a__U12(mark(X))
            mark(__(X1,X2)) -> a____(mark(X1),mark(X2))
            mark(isNePal(X)) -> a__isNePal(mark(X))
            mark(nil()) -> nil()
            mark(tt()) -> tt()
        - Signature:
            {a__U11/1,a__U12/1,a____/2,a__isNePal/1,mark/1,a__U11#/1,a__U12#/1,a____#/2,a__isNePal#/1,mark#/1} / {U11/1
            ,U12/1,__/2,isNePal/1,nil/0,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/5,c_8/1,c_9/0,c_10/1,c_11/2,c_12/2
            ,c_13/3,c_14/2,c_15/0,c_16/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__U11#,a__U12#,a____#,a__isNePal#
            ,mark#} and constructors {U11,U12,__,isNePal,nil,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {5,6}.
        Here rules are labelled as follows:
          1: a__U11#(tt()) -> c_2(a__U12#(tt()))
          2: a____#(X,nil()) -> c_5(mark#(X))
          3: a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                     ,mark#(X)
                                     ,a____#(mark(Y),mark(Z))
                                     ,mark#(Y)
                                     ,mark#(Z))
          4: a____#(nil(),X) -> c_8(mark#(X))
          5: a__isNePal#(__(I,__(P,I))) -> c_10(a__U11#(tt()))
          6: mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X))
          7: mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X))
          8: mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
          9: mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X))
          10: a__U11#(X) -> c_1()
          11: a__U12#(X) -> c_3()
          12: a__U12#(tt()) -> c_4()
          13: a____#(X1,X2) -> c_6()
          14: a__isNePal#(X) -> c_9()
          15: mark#(nil()) -> c_15()
          16: mark#(tt()) -> c_16()
* Step 4: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            a____#(X,nil()) -> c_5(mark#(X))
            a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                    ,mark#(X)
                                    ,a____#(mark(Y),mark(Z))
                                    ,mark#(Y)
                                    ,mark#(Z))
            a____#(nil(),X) -> c_8(mark#(X))
            a__isNePal#(__(I,__(P,I))) -> c_10(a__U11#(tt()))
            mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X))
            mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X))
            mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
            mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X))
        - Weak DPs:
            a__U11#(X) -> c_1()
            a__U11#(tt()) -> c_2(a__U12#(tt()))
            a__U12#(X) -> c_3()
            a__U12#(tt()) -> c_4()
            a____#(X1,X2) -> c_6()
            a__isNePal#(X) -> c_9()
            mark#(nil()) -> c_15()
            mark#(tt()) -> c_16()
        - Weak TRS:
            a__U11(X) -> U11(X)
            a__U11(tt()) -> a__U12(tt())
            a__U12(X) -> U12(X)
            a__U12(tt()) -> tt()
            a____(X,nil()) -> mark(X)
            a____(X1,X2) -> __(X1,X2)
            a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z)))
            a____(nil(),X) -> mark(X)
            a__isNePal(X) -> isNePal(X)
            a__isNePal(__(I,__(P,I))) -> a__U11(tt())
            mark(U11(X)) -> a__U11(mark(X))
            mark(U12(X)) -> a__U12(mark(X))
            mark(__(X1,X2)) -> a____(mark(X1),mark(X2))
            mark(isNePal(X)) -> a__isNePal(mark(X))
            mark(nil()) -> nil()
            mark(tt()) -> tt()
        - Signature:
            {a__U11/1,a__U12/1,a____/2,a__isNePal/1,mark/1,a__U11#/1,a__U12#/1,a____#/2,a__isNePal#/1,mark#/1} / {U11/1
            ,U12/1,__/2,isNePal/1,nil/0,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/5,c_8/1,c_9/0,c_10/1,c_11/2,c_12/2
            ,c_13/3,c_14/2,c_15/0,c_16/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__U11#,a__U12#,a____#,a__isNePal#
            ,mark#} and constructors {U11,U12,__,isNePal,nil,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {4}
        by application of
          Pre({4}) = {8}.
        Here rules are labelled as follows:
          1: a____#(X,nil()) -> c_5(mark#(X))
          2: a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                     ,mark#(X)
                                     ,a____#(mark(Y),mark(Z))
                                     ,mark#(Y)
                                     ,mark#(Z))
          3: a____#(nil(),X) -> c_8(mark#(X))
          4: a__isNePal#(__(I,__(P,I))) -> c_10(a__U11#(tt()))
          5: mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X))
          6: mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X))
          7: mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
          8: mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X))
          9: a__U11#(X) -> c_1()
          10: a__U11#(tt()) -> c_2(a__U12#(tt()))
          11: a__U12#(X) -> c_3()
          12: a__U12#(tt()) -> c_4()
          13: a____#(X1,X2) -> c_6()
          14: a__isNePal#(X) -> c_9()
          15: mark#(nil()) -> c_15()
          16: mark#(tt()) -> c_16()
* Step 5: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            a____#(X,nil()) -> c_5(mark#(X))
            a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                    ,mark#(X)
                                    ,a____#(mark(Y),mark(Z))
                                    ,mark#(Y)
                                    ,mark#(Z))
            a____#(nil(),X) -> c_8(mark#(X))
            mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X))
            mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X))
            mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
            mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X))
        - Weak DPs:
            a__U11#(X) -> c_1()
            a__U11#(tt()) -> c_2(a__U12#(tt()))
            a__U12#(X) -> c_3()
            a__U12#(tt()) -> c_4()
            a____#(X1,X2) -> c_6()
            a__isNePal#(X) -> c_9()
            a__isNePal#(__(I,__(P,I))) -> c_10(a__U11#(tt()))
            mark#(nil()) -> c_15()
            mark#(tt()) -> c_16()
        - Weak TRS:
            a__U11(X) -> U11(X)
            a__U11(tt()) -> a__U12(tt())
            a__U12(X) -> U12(X)
            a__U12(tt()) -> tt()
            a____(X,nil()) -> mark(X)
            a____(X1,X2) -> __(X1,X2)
            a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z)))
            a____(nil(),X) -> mark(X)
            a__isNePal(X) -> isNePal(X)
            a__isNePal(__(I,__(P,I))) -> a__U11(tt())
            mark(U11(X)) -> a__U11(mark(X))
            mark(U12(X)) -> a__U12(mark(X))
            mark(__(X1,X2)) -> a____(mark(X1),mark(X2))
            mark(isNePal(X)) -> a__isNePal(mark(X))
            mark(nil()) -> nil()
            mark(tt()) -> tt()
        - Signature:
            {a__U11/1,a__U12/1,a____/2,a__isNePal/1,mark/1,a__U11#/1,a__U12#/1,a____#/2,a__isNePal#/1,mark#/1} / {U11/1
            ,U12/1,__/2,isNePal/1,nil/0,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/5,c_8/1,c_9/0,c_10/1,c_11/2,c_12/2
            ,c_13/3,c_14/2,c_15/0,c_16/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__U11#,a__U12#,a____#,a__isNePal#
            ,mark#} and constructors {U11,U12,__,isNePal,nil,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:a____#(X,nil()) -> c_5(mark#(X))
             -->_1 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_1 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_1 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_1 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
             -->_1 mark#(tt()) -> c_16():16
             -->_1 mark#(nil()) -> c_15():15
          
          2:S:a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                      ,mark#(X)
                                      ,a____#(mark(Y),mark(Z))
                                      ,mark#(Y)
                                      ,mark#(Z))
             -->_5 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_4 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_2 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_5 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_4 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_2 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_5 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_4 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_2 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_5 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
             -->_4 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
             -->_2 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
             -->_3 a____#(nil(),X) -> c_8(mark#(X)):3
             -->_1 a____#(nil(),X) -> c_8(mark#(X)):3
             -->_5 mark#(tt()) -> c_16():16
             -->_4 mark#(tt()) -> c_16():16
             -->_2 mark#(tt()) -> c_16():16
             -->_5 mark#(nil()) -> c_15():15
             -->_4 mark#(nil()) -> c_15():15
             -->_2 mark#(nil()) -> c_15():15
             -->_3 a____#(X1,X2) -> c_6():12
             -->_1 a____#(X1,X2) -> c_6():12
             -->_3 a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                           ,mark#(X)
                                           ,a____#(mark(Y),mark(Z))
                                           ,mark#(Y)
                                           ,mark#(Z)):2
             -->_1 a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                           ,mark#(X)
                                           ,a____#(mark(Y),mark(Z))
                                           ,mark#(Y)
                                           ,mark#(Z)):2
             -->_3 a____#(X,nil()) -> c_5(mark#(X)):1
             -->_1 a____#(X,nil()) -> c_5(mark#(X)):1
          
          3:S:a____#(nil(),X) -> c_8(mark#(X))
             -->_1 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_1 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_1 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_1 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
             -->_1 mark#(tt()) -> c_16():16
             -->_1 mark#(nil()) -> c_15():15
          
          4:S:mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X))
             -->_1 a__U11#(tt()) -> c_2(a__U12#(tt())):9
             -->_2 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_2 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_2 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_2 mark#(tt()) -> c_16():16
             -->_2 mark#(nil()) -> c_15():15
             -->_1 a__U11#(X) -> c_1():8
             -->_2 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
          
          5:S:mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X))
             -->_2 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_2 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_2 mark#(tt()) -> c_16():16
             -->_2 mark#(nil()) -> c_15():15
             -->_1 a__U12#(tt()) -> c_4():11
             -->_1 a__U12#(X) -> c_3():10
             -->_2 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_2 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
          
          6:S:mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
             -->_3 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_2 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_3 mark#(tt()) -> c_16():16
             -->_2 mark#(tt()) -> c_16():16
             -->_3 mark#(nil()) -> c_15():15
             -->_2 mark#(nil()) -> c_15():15
             -->_1 a____#(X1,X2) -> c_6():12
             -->_3 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_2 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_3 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_2 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_3 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
             -->_2 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
             -->_1 a____#(nil(),X) -> c_8(mark#(X)):3
             -->_1 a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                           ,mark#(X)
                                           ,a____#(mark(Y),mark(Z))
                                           ,mark#(Y)
                                           ,mark#(Z)):2
             -->_1 a____#(X,nil()) -> c_5(mark#(X)):1
          
          7:S:mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X))
             -->_1 a__isNePal#(__(I,__(P,I))) -> c_10(a__U11#(tt())):14
             -->_2 mark#(tt()) -> c_16():16
             -->_2 mark#(nil()) -> c_15():15
             -->_1 a__isNePal#(X) -> c_9():13
             -->_2 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_2 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_2 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_2 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
          
          8:W:a__U11#(X) -> c_1()
             
          
          9:W:a__U11#(tt()) -> c_2(a__U12#(tt()))
             -->_1 a__U12#(tt()) -> c_4():11
             -->_1 a__U12#(X) -> c_3():10
          
          10:W:a__U12#(X) -> c_3()
             
          
          11:W:a__U12#(tt()) -> c_4()
             
          
          12:W:a____#(X1,X2) -> c_6()
             
          
          13:W:a__isNePal#(X) -> c_9()
             
          
          14:W:a__isNePal#(__(I,__(P,I))) -> c_10(a__U11#(tt()))
             -->_1 a__U11#(tt()) -> c_2(a__U12#(tt())):9
             -->_1 a__U11#(X) -> c_1():8
          
          15:W:mark#(nil()) -> c_15()
             
          
          16:W:mark#(tt()) -> c_16()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          12: a____#(X1,X2) -> c_6()
          13: a__isNePal#(X) -> c_9()
          15: mark#(nil()) -> c_15()
          16: mark#(tt()) -> c_16()
          14: a__isNePal#(__(I,__(P,I))) -> c_10(a__U11#(tt()))
          8: a__U11#(X) -> c_1()
          9: a__U11#(tt()) -> c_2(a__U12#(tt()))
          10: a__U12#(X) -> c_3()
          11: a__U12#(tt()) -> c_4()
* Step 6: SimplifyRHS MAYBE
    + Considered Problem:
        - Strict DPs:
            a____#(X,nil()) -> c_5(mark#(X))
            a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                    ,mark#(X)
                                    ,a____#(mark(Y),mark(Z))
                                    ,mark#(Y)
                                    ,mark#(Z))
            a____#(nil(),X) -> c_8(mark#(X))
            mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X))
            mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X))
            mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
            mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X))
        - Weak TRS:
            a__U11(X) -> U11(X)
            a__U11(tt()) -> a__U12(tt())
            a__U12(X) -> U12(X)
            a__U12(tt()) -> tt()
            a____(X,nil()) -> mark(X)
            a____(X1,X2) -> __(X1,X2)
            a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z)))
            a____(nil(),X) -> mark(X)
            a__isNePal(X) -> isNePal(X)
            a__isNePal(__(I,__(P,I))) -> a__U11(tt())
            mark(U11(X)) -> a__U11(mark(X))
            mark(U12(X)) -> a__U12(mark(X))
            mark(__(X1,X2)) -> a____(mark(X1),mark(X2))
            mark(isNePal(X)) -> a__isNePal(mark(X))
            mark(nil()) -> nil()
            mark(tt()) -> tt()
        - Signature:
            {a__U11/1,a__U12/1,a____/2,a__isNePal/1,mark/1,a__U11#/1,a__U12#/1,a____#/2,a__isNePal#/1,mark#/1} / {U11/1
            ,U12/1,__/2,isNePal/1,nil/0,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/5,c_8/1,c_9/0,c_10/1,c_11/2,c_12/2
            ,c_13/3,c_14/2,c_15/0,c_16/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__U11#,a__U12#,a____#,a__isNePal#
            ,mark#} and constructors {U11,U12,__,isNePal,nil,tt}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:a____#(X,nil()) -> c_5(mark#(X))
             -->_1 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_1 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_1 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_1 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
          
          2:S:a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                      ,mark#(X)
                                      ,a____#(mark(Y),mark(Z))
                                      ,mark#(Y)
                                      ,mark#(Z))
             -->_5 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_4 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_2 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_5 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_4 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_2 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_5 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_4 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_2 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_5 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
             -->_4 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
             -->_2 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
             -->_3 a____#(nil(),X) -> c_8(mark#(X)):3
             -->_1 a____#(nil(),X) -> c_8(mark#(X)):3
             -->_3 a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                           ,mark#(X)
                                           ,a____#(mark(Y),mark(Z))
                                           ,mark#(Y)
                                           ,mark#(Z)):2
             -->_1 a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                           ,mark#(X)
                                           ,a____#(mark(Y),mark(Z))
                                           ,mark#(Y)
                                           ,mark#(Z)):2
             -->_3 a____#(X,nil()) -> c_5(mark#(X)):1
             -->_1 a____#(X,nil()) -> c_5(mark#(X)):1
          
          3:S:a____#(nil(),X) -> c_8(mark#(X))
             -->_1 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_1 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_1 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_1 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
          
          4:S:mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X))
             -->_2 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_2 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_2 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_2 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
          
          5:S:mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X))
             -->_2 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_2 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_2 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_2 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
          
          6:S:mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
             -->_3 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_2 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_3 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_2 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_3 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_2 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_3 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
             -->_2 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
             -->_1 a____#(nil(),X) -> c_8(mark#(X)):3
             -->_1 a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                           ,mark#(X)
                                           ,a____#(mark(Y),mark(Z))
                                           ,mark#(Y)
                                           ,mark#(Z)):2
             -->_1 a____#(X,nil()) -> c_5(mark#(X)):1
          
          7:S:mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X))
             -->_2 mark#(isNePal(X)) -> c_14(a__isNePal#(mark(X)),mark#(X)):7
             -->_2 mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2)):6
             -->_2 mark#(U12(X)) -> c_12(a__U12#(mark(X)),mark#(X)):5
             -->_2 mark#(U11(X)) -> c_11(a__U11#(mark(X)),mark#(X)):4
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          mark#(U11(X)) -> c_11(mark#(X))
          mark#(U12(X)) -> c_12(mark#(X))
          mark#(isNePal(X)) -> c_14(mark#(X))
* Step 7: WeightGap MAYBE
    + Considered Problem:
        - Strict DPs:
            a____#(X,nil()) -> c_5(mark#(X))
            a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                    ,mark#(X)
                                    ,a____#(mark(Y),mark(Z))
                                    ,mark#(Y)
                                    ,mark#(Z))
            a____#(nil(),X) -> c_8(mark#(X))
            mark#(U11(X)) -> c_11(mark#(X))
            mark#(U12(X)) -> c_12(mark#(X))
            mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
            mark#(isNePal(X)) -> c_14(mark#(X))
        - Weak TRS:
            a__U11(X) -> U11(X)
            a__U11(tt()) -> a__U12(tt())
            a__U12(X) -> U12(X)
            a__U12(tt()) -> tt()
            a____(X,nil()) -> mark(X)
            a____(X1,X2) -> __(X1,X2)
            a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z)))
            a____(nil(),X) -> mark(X)
            a__isNePal(X) -> isNePal(X)
            a__isNePal(__(I,__(P,I))) -> a__U11(tt())
            mark(U11(X)) -> a__U11(mark(X))
            mark(U12(X)) -> a__U12(mark(X))
            mark(__(X1,X2)) -> a____(mark(X1),mark(X2))
            mark(isNePal(X)) -> a__isNePal(mark(X))
            mark(nil()) -> nil()
            mark(tt()) -> tt()
        - Signature:
            {a__U11/1,a__U12/1,a____/2,a__isNePal/1,mark/1,a__U11#/1,a__U12#/1,a____#/2,a__isNePal#/1,mark#/1} / {U11/1
            ,U12/1,__/2,isNePal/1,nil/0,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/5,c_8/1,c_9/0,c_10/1,c_11/1,c_12/1
            ,c_13/3,c_14/1,c_15/0,c_16/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__U11#,a__U12#,a____#,a__isNePal#
            ,mark#} and constructors {U11,U12,__,isNePal,nil,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
          The following argument positions are considered usable:
            uargs(a__U11) = {1},
            uargs(a__U12) = {1},
            uargs(a____) = {1,2},
            uargs(a__isNePal) = {1},
            uargs(a____#) = {1,2},
            uargs(c_5) = {1},
            uargs(c_7) = {1,2,3,4,5},
            uargs(c_8) = {1},
            uargs(c_11) = {1},
            uargs(c_12) = {1},
            uargs(c_13) = {1,2,3},
            uargs(c_14) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(U11) = [0]                                             
                    p(U12) = [0]                                             
                     p(__) = [0]                                             
                 p(a__U11) = [1] x1 + [0]                                    
                 p(a__U12) = [1] x1 + [0]                                    
                  p(a____) = [1] x1 + [1] x2 + [0]                           
             p(a__isNePal) = [1] x1 + [0]                                    
                p(isNePal) = [0]                                             
                   p(mark) = [0]                                             
                    p(nil) = [0]                                             
                     p(tt) = [0]                                             
                p(a__U11#) = [0]                                             
                p(a__U12#) = [0]                                             
                 p(a____#) = [1] x1 + [1] x2 + [4]                           
            p(a__isNePal#) = [0]                                             
                  p(mark#) = [2]                                             
                    p(c_1) = [0]                                             
                    p(c_2) = [0]                                             
                    p(c_3) = [0]                                             
                    p(c_4) = [0]                                             
                    p(c_5) = [1] x1 + [0]                                    
                    p(c_6) = [0]                                             
                    p(c_7) = [1] x1 + [1] x2 + [1] x3 + [1] x4 + [1] x5 + [0]
                    p(c_8) = [1] x1 + [0]                                    
                    p(c_9) = [0]                                             
                   p(c_10) = [0]                                             
                   p(c_11) = [1] x1 + [0]                                    
                   p(c_12) = [1] x1 + [0]                                    
                   p(c_13) = [1] x1 + [1] x2 + [1] x3 + [2]                  
                   p(c_14) = [1] x1 + [4]                                    
                   p(c_15) = [0]                                             
                   p(c_16) = [1]                                             
          
          Following rules are strictly oriented:
          a____#(X,nil()) = [1] X + [4]  
                          > [2]          
                          = c_5(mark#(X))
          
          a____#(nil(),X) = [1] X + [4]  
                          > [2]          
                          = c_8(mark#(X))
          
          
          Following rules are (at-least) weakly oriented:
                  a____#(__(X,Y),Z) =  [1] Z + [4]                                                                                   
                                    >= [14]                                                                                          
                                    =  c_7(a____#(mark(X),a____(mark(Y),mark(Z))),mark#(X),a____#(mark(Y),mark(Z)),mark#(Y),mark#(Z))
          
                      mark#(U11(X)) =  [2]                                                                                           
                                    >= [2]                                                                                           
                                    =  c_11(mark#(X))                                                                                
          
                      mark#(U12(X)) =  [2]                                                                                           
                                    >= [2]                                                                                           
                                    =  c_12(mark#(X))                                                                                
          
                   mark#(__(X1,X2)) =  [2]                                                                                           
                                    >= [10]                                                                                          
                                    =  c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2))                                           
          
                  mark#(isNePal(X)) =  [2]                                                                                           
                                    >= [6]                                                                                           
                                    =  c_14(mark#(X))                                                                                
          
                          a__U11(X) =  [1] X + [0]                                                                                   
                                    >= [0]                                                                                           
                                    =  U11(X)                                                                                        
          
                       a__U11(tt()) =  [0]                                                                                           
                                    >= [0]                                                                                           
                                    =  a__U12(tt())                                                                                  
          
                          a__U12(X) =  [1] X + [0]                                                                                   
                                    >= [0]                                                                                           
                                    =  U12(X)                                                                                        
          
                       a__U12(tt()) =  [0]                                                                                           
                                    >= [0]                                                                                           
                                    =  tt()                                                                                          
          
                     a____(X,nil()) =  [1] X + [0]                                                                                   
                                    >= [0]                                                                                           
                                    =  mark(X)                                                                                       
          
                       a____(X1,X2) =  [1] X1 + [1] X2 + [0]                                                                         
                                    >= [0]                                                                                           
                                    =  __(X1,X2)                                                                                     
          
                   a____(__(X,Y),Z) =  [1] Z + [0]                                                                                   
                                    >= [0]                                                                                           
                                    =  a____(mark(X),a____(mark(Y),mark(Z)))                                                         
          
                     a____(nil(),X) =  [1] X + [0]                                                                                   
                                    >= [0]                                                                                           
                                    =  mark(X)                                                                                       
          
                      a__isNePal(X) =  [1] X + [0]                                                                                   
                                    >= [0]                                                                                           
                                    =  isNePal(X)                                                                                    
          
          a__isNePal(__(I,__(P,I))) =  [0]                                                                                           
                                    >= [0]                                                                                           
                                    =  a__U11(tt())                                                                                  
          
                       mark(U11(X)) =  [0]                                                                                           
                                    >= [0]                                                                                           
                                    =  a__U11(mark(X))                                                                               
          
                       mark(U12(X)) =  [0]                                                                                           
                                    >= [0]                                                                                           
                                    =  a__U12(mark(X))                                                                               
          
                    mark(__(X1,X2)) =  [0]                                                                                           
                                    >= [0]                                                                                           
                                    =  a____(mark(X1),mark(X2))                                                                      
          
                   mark(isNePal(X)) =  [0]                                                                                           
                                    >= [0]                                                                                           
                                    =  a__isNePal(mark(X))                                                                           
          
                        mark(nil()) =  [0]                                                                                           
                                    >= [0]                                                                                           
                                    =  nil()                                                                                         
          
                         mark(tt()) =  [0]                                                                                           
                                    >= [0]                                                                                           
                                    =  tt()                                                                                          
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 8: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          a____#(__(X,Y),Z) -> c_7(a____#(mark(X),a____(mark(Y),mark(Z)))
                                  ,mark#(X)
                                  ,a____#(mark(Y),mark(Z))
                                  ,mark#(Y)
                                  ,mark#(Z))
          mark#(U11(X)) -> c_11(mark#(X))
          mark#(U12(X)) -> c_12(mark#(X))
          mark#(__(X1,X2)) -> c_13(a____#(mark(X1),mark(X2)),mark#(X1),mark#(X2))
          mark#(isNePal(X)) -> c_14(mark#(X))
      - Weak DPs:
          a____#(X,nil()) -> c_5(mark#(X))
          a____#(nil(),X) -> c_8(mark#(X))
      - Weak TRS:
          a__U11(X) -> U11(X)
          a__U11(tt()) -> a__U12(tt())
          a__U12(X) -> U12(X)
          a__U12(tt()) -> tt()
          a____(X,nil()) -> mark(X)
          a____(X1,X2) -> __(X1,X2)
          a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z)))
          a____(nil(),X) -> mark(X)
          a__isNePal(X) -> isNePal(X)
          a__isNePal(__(I,__(P,I))) -> a__U11(tt())
          mark(U11(X)) -> a__U11(mark(X))
          mark(U12(X)) -> a__U12(mark(X))
          mark(__(X1,X2)) -> a____(mark(X1),mark(X2))
          mark(isNePal(X)) -> a__isNePal(mark(X))
          mark(nil()) -> nil()
          mark(tt()) -> tt()
      - Signature:
          {a__U11/1,a__U12/1,a____/2,a__isNePal/1,mark/1,a__U11#/1,a__U12#/1,a____#/2,a__isNePal#/1,mark#/1} / {U11/1
          ,U12/1,__/2,isNePal/1,nil/0,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/5,c_8/1,c_9/0,c_10/1,c_11/1,c_12/1
          ,c_13/3,c_14/1,c_15/0,c_16/0}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {a__U11#,a__U12#,a____#,a__isNePal#
          ,mark#} and constructors {U11,U12,__,isNePal,nil,tt}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE