WORST_CASE(?,O(n^1))
* Step 1: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            @(Cons(x,xs),ys) -> Cons(x,@(xs,ys))
            @(Nil(),ys) -> ys
            game(p1,p2,Cons(Swap(),xs)) -> game(p2,p1,xs)
            game(p1,p2,Nil()) -> @(p1,p2)
            game(p1,Cons(x',xs'),Cons(Capture(),xs)) -> game(Cons(x',p1),xs',xs)
            goal(p1,p2,moves) -> game(p1,p2,moves)
        - Signature:
            {@/2,game/3,goal/3} / {Capture/0,Cons/2,Nil/0,Swap/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {@,game,goal} and constructors {Capture,Cons,Nil,Swap}
    + Applied Processor:
        Ara {araHeuristics = NoHeuristics, minDegree = 1, maxDegree = 2, araTimeout = 5, araRuleShifting = Nothing}
    + Details:
        Signatures used:
        ----------------
          @ :: ["A"(10) x "A"(10)] -(4)-> "A"(0)
          Capture :: [] -(0)-> "A"(0)
          Cons :: ["A"(0) x "A"(10)] -(10)-> "A"(10)
          Cons :: ["A"(0) x "A"(15)] -(15)-> "A"(15)
          Cons :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          Nil :: [] -(0)-> "A"(10)
          Nil :: [] -(0)-> "A"(15)
          Swap :: [] -(0)-> "A"(0)
          game :: ["A"(10) x "A"(10) x "A"(15)] -(5)-> "A"(0)
          goal :: ["A"(10) x "A"(14) x "A"(15)] -(8)-> "A"(0)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "Capture_A" :: [] -(0)-> "A"(1)
          "Cons_A" :: ["A"(0) x "A"(1)] -(1)-> "A"(1)
          "Nil_A" :: [] -(0)-> "A"(1)
          "Swap_A" :: [] -(0)-> "A"(1)
        

WORST_CASE(?,O(n^1))