WORST_CASE(?,O(n^3)) * Step 1: DependencyPairs WORST_CASE(?,O(n^3)) + Considered Problem: - Strict TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {add,mult} and constructors {0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs add#(0(),y) -> c_1() add#(s(x),y) -> c_2(add#(x,y)) mult#(0(),y) -> c_3() mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: add#(0(),y) -> c_1() add#(s(x),y) -> c_2(add#(x,y)) mult#(0(),y) -> c_3() mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3} by application of Pre({1,3}) = {2,4}. Here rules are labelled as follows: 1: add#(0(),y) -> c_1() 2: add#(s(x),y) -> c_2(add#(x,y)) 3: mult#(0(),y) -> c_3() 4: mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: add#(s(x),y) -> c_2(add#(x,y)) mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) - Weak DPs: add#(0(),y) -> c_1() mult#(0(),y) -> c_3() - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:add#(s(x),y) -> c_2(add#(x,y)) -->_1 add#(0(),y) -> c_1():3 -->_1 add#(s(x),y) -> c_2(add#(x,y)):1 2:S:mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) -->_2 mult#(0(),y) -> c_3():4 -->_1 add#(0(),y) -> c_1():3 -->_2 mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)):2 -->_1 add#(s(x),y) -> c_2(add#(x,y)):1 3:W:add#(0(),y) -> c_1() 4:W:mult#(0(),y) -> c_3() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: mult#(0(),y) -> c_3() 3: add#(0(),y) -> c_1() * Step 4: Decompose WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: add#(s(x),y) -> c_2(add#(x,y)) mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: add#(s(x),y) -> c_2(add#(x,y)) - Weak DPs: mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} Problem (S) - Strict DPs: mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) - Weak DPs: add#(s(x),y) -> c_2(add#(x,y)) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} ** Step 4.a:1: DecomposeDG WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: add#(s(x),y) -> c_2(add#(x,y)) - Weak DPs: mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) and a lower component add#(s(x),y) -> c_2(add#(x,y)) Further, following extension rules are added to the lower component. mult#(s(x),y) -> add#(mult(x,y),y) mult#(s(x),y) -> mult#(x,y) *** Step 4.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) The strictly oriented rules are moved into the weak component. **** Step 4.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1,2} Following symbols are considered usable: {add#,mult#} TcT has computed the following interpretation: p(0) = [2] p(add) = [9] x1 + [0] p(mult) = [0] p(s) = [1] x1 + [2] p(add#) = [0] p(mult#) = [1] x1 + [0] p(c_1) = [4] p(c_2) = [4] x1 + [2] p(c_3) = [8] p(c_4) = [2] x1 + [1] x2 + [0] Following rules are strictly oriented: mult#(s(x),y) = [1] x + [2] > [1] x + [0] = c_4(add#(mult(x,y),y),mult#(x,y)) Following rules are (at-least) weakly oriented: **** Step 4.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 4.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) -->_2 mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) **** Step 4.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 4.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: add#(s(x),y) -> c_2(add#(x,y)) - Weak DPs: mult#(s(x),y) -> add#(mult(x,y),y) mult#(s(x),y) -> mult#(x,y) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: add#(s(x),y) -> c_2(add#(x,y)) The strictly oriented rules are moved into the weak component. **** Step 4.a:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: add#(s(x),y) -> c_2(add#(x,y)) - Weak DPs: mult#(s(x),y) -> add#(mult(x,y),y) mult#(s(x),y) -> mult#(x,y) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_2) = {1} Following symbols are considered usable: {add,mult,add#,mult#} TcT has computed the following interpretation: p(0) = 0 p(add) = x1 + 2*x2 p(mult) = x1*x2 p(s) = 2 + x1 p(add#) = 2 + 3*x1 + x2 + 2*x2^2 p(mult#) = 2 + 4*x1*x2 + 4*x2^2 p(c_1) = 2 p(c_2) = x1 p(c_3) = 2 p(c_4) = x2 Following rules are strictly oriented: add#(s(x),y) = 8 + 3*x + y + 2*y^2 > 2 + 3*x + y + 2*y^2 = c_2(add#(x,y)) Following rules are (at-least) weakly oriented: mult#(s(x),y) = 2 + 4*x*y + 8*y + 4*y^2 >= 2 + 3*x*y + y + 2*y^2 = add#(mult(x,y),y) mult#(s(x),y) = 2 + 4*x*y + 8*y + 4*y^2 >= 2 + 4*x*y + 4*y^2 = mult#(x,y) add(0(),y) = 2*y >= y = y add(s(x),y) = 2 + x + 2*y >= 2 + x + 2*y = s(add(x,y)) mult(0(),y) = 0 >= 0 = 0() mult(s(x),y) = x*y + 2*y >= x*y + 2*y = add(mult(x,y),y) **** Step 4.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: add#(s(x),y) -> c_2(add#(x,y)) mult#(s(x),y) -> add#(mult(x,y),y) mult#(s(x),y) -> mult#(x,y) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 4.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: add#(s(x),y) -> c_2(add#(x,y)) mult#(s(x),y) -> add#(mult(x,y),y) mult#(s(x),y) -> mult#(x,y) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:add#(s(x),y) -> c_2(add#(x,y)) -->_1 add#(s(x),y) -> c_2(add#(x,y)):1 2:W:mult#(s(x),y) -> add#(mult(x,y),y) -->_1 add#(s(x),y) -> c_2(add#(x,y)):1 3:W:mult#(s(x),y) -> mult#(x,y) -->_1 mult#(s(x),y) -> mult#(x,y):3 -->_1 mult#(s(x),y) -> add#(mult(x,y),y):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: mult#(s(x),y) -> mult#(x,y) 2: mult#(s(x),y) -> add#(mult(x,y),y) 1: add#(s(x),y) -> c_2(add#(x,y)) **** Step 4.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) - Weak DPs: add#(s(x),y) -> c_2(add#(x,y)) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) -->_1 add#(s(x),y) -> c_2(add#(x,y)):2 -->_2 mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)):1 2:W:add#(s(x),y) -> c_2(add#(x,y)) -->_1 add#(s(x),y) -> c_2(add#(x,y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: add#(s(x),y) -> c_2(add#(x,y)) ** Step 4.b:2: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)) -->_2 mult#(s(x),y) -> c_4(add#(mult(x,y),y),mult#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: mult#(s(x),y) -> c_4(mult#(x,y)) ** Step 4.b:3: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mult#(s(x),y) -> c_4(mult#(x,y)) - Weak TRS: add(0(),y) -> y add(s(x),y) -> s(add(x,y)) mult(0(),y) -> 0() mult(s(x),y) -> add(mult(x,y),y) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: mult#(s(x),y) -> c_4(mult#(x,y)) ** Step 4.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mult#(s(x),y) -> c_4(mult#(x,y)) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: mult#(s(x),y) -> c_4(mult#(x,y)) The strictly oriented rules are moved into the weak component. *** Step 4.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mult#(s(x),y) -> c_4(mult#(x,y)) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1} Following symbols are considered usable: {add#,mult#} TcT has computed the following interpretation: p(0) = [2] p(add) = [2] x2 + [0] p(mult) = [1] x1 + [1] x2 + [0] p(s) = [1] x1 + [2] p(add#) = [8] x1 + [1] x2 + [0] p(mult#) = [9] x1 + [4] x2 + [2] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [1] x1 + [10] Following rules are strictly oriented: mult#(s(x),y) = [9] x + [4] y + [20] > [9] x + [4] y + [12] = c_4(mult#(x,y)) Following rules are (at-least) weakly oriented: *** Step 4.b:4.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: mult#(s(x),y) -> c_4(mult#(x,y)) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 4.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: mult#(s(x),y) -> c_4(mult#(x,y)) - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:mult#(s(x),y) -> c_4(mult#(x,y)) -->_1 mult#(s(x),y) -> c_4(mult#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: mult#(s(x),y) -> c_4(mult#(x,y)) *** Step 4.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {add/2,mult/2,add#/2,mult#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,mult#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^3))