WORST_CASE(?,O(n^2))
* Step 1: Ara WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            append(cons(x,xs),ys) -> cons(x,append(xs,ys))
            append(nil(),ys) -> ys
            attach(x,cons(y,ys)) -> cons(pair(x,y),attach(x,ys))
            attach(x,nil()) -> nil()
            pairs(cons(x,xs)) -> append(attach(x,xs),pairs(xs))
            pairs(nil()) -> nil()
        - Signature:
            {append/2,attach/2,pairs/1} / {cons/2,nil/0,pair/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append,attach,pairs} and constructors {cons,nil,pair}
    + Applied Processor:
        Ara {araHeuristics = NoHeuristics, minDegree = 1, maxDegree = 2, araTimeout = 5, araRuleShifting = Nothing}
    + Details:
        Signatures used:
        ----------------
          append :: ["A"(5, 0) x "A"(0, 0)] -(3)-> "A"(0, 0)
          attach :: ["A"(0, 0) x "A"(13, 0)] -(2)-> "A"(5, 0)
          cons :: ["A"(5, 0) x "A"(5, 0)] -(5)-> "A"(5, 0)
          cons :: ["A"(13, 0) x "A"(13, 0)] -(13)-> "A"(13, 0)
          cons :: ["A"(0, 0) x "A"(15, 15)] -(15)-> "A"(0, 15)
          cons :: ["A"(0, 0) x "A"(0, 0)] -(0)-> "A"(0, 0)
          nil :: [] -(0)-> "A"(5, 0)
          nil :: [] -(0)-> "A"(13, 0)
          nil :: [] -(0)-> "A"(0, 15)
          nil :: [] -(0)-> "A"(11, 7)
          nil :: [] -(0)-> "A"(6, 7)
          pair :: ["A"(0, 0) x "A"(7, 0)] -(0)-> "A"(8, 7)
          pairs :: ["A"(0, 15)] -(1)-> "A"(0, 0)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "cons_A" :: ["A"(1, 0) x "A"(1, 0)] -(1)-> "A"(1, 0)
          "cons_A" :: ["A"(0, 0) x "A"(1, 1)] -(1)-> "A"(0, 1)
          "nil_A" :: [] -(0)-> "A"(1, 0)
          "nil_A" :: [] -(0)-> "A"(0, 1)
          "pair_A" :: ["A"(0, 0) x "A"(0, 0)] -(0)-> "A"(1, 0)
          "pair_A" :: ["A"(0, 0) x "A"(1, 0)] -(0)-> "A"(0, 1)
        

WORST_CASE(?,O(n^2))