WORST_CASE(?,O(n^3)) * Step 1: DependencyPairs WORST_CASE(?,O(n^3)) + Considered Problem: - Strict TRS: append(cons(x,xs),ys) -> cons(x,append(xs,ys)) append(nil(),ys) -> ys attach(x,cons(y,ys)) -> cons(pair(x,y),attach(x,ys)) attach(x,nil()) -> nil() pairsp(cons(x,xs)) -> append(pairsp(xs),attach(x,xs)) pairsp(nil()) -> nil() - Signature: {append/2,attach/2,pairsp/1} / {cons/2,nil/0,pair/2} - Obligation: innermost runtime complexity wrt. defined symbols {append,attach,pairsp} and constructors {cons,nil,pair} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs append#(cons(x,xs),ys) -> c_1(append#(xs,ys)) append#(nil(),ys) -> c_2() attach#(x,cons(y,ys)) -> c_3(attach#(x,ys)) attach#(x,nil()) -> c_4() pairsp#(cons(x,xs)) -> c_5(append#(pairsp(xs),attach(x,xs)),pairsp#(xs),attach#(x,xs)) pairsp#(nil()) -> c_6() Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: append#(cons(x,xs),ys) -> c_1(append#(xs,ys)) append#(nil(),ys) -> c_2() attach#(x,cons(y,ys)) -> c_3(attach#(x,ys)) attach#(x,nil()) -> c_4() pairsp#(cons(x,xs)) -> c_5(append#(pairsp(xs),attach(x,xs)),pairsp#(xs),attach#(x,xs)) pairsp#(nil()) -> c_6() - Weak TRS: append(cons(x,xs),ys) -> cons(x,append(xs,ys)) append(nil(),ys) -> ys attach(x,cons(y,ys)) -> cons(pair(x,y),attach(x,ys)) attach(x,nil()) -> nil() pairsp(cons(x,xs)) -> append(pairsp(xs),attach(x,xs)) pairsp(nil()) -> nil() - Signature: {append/2,attach/2,pairsp/1,append#/2,attach#/2,pairsp#/1} / {cons/2,nil/0,pair/2,c_1/1,c_2/0,c_3/1,c_4/0 ,c_5/3,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,attach#,pairsp#} and constructors {cons,nil,pair} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,4,6} by application of Pre({2,4,6}) = {1,3,5}. Here rules are labelled as follows: 1: append#(cons(x,xs),ys) -> c_1(append#(xs,ys)) 2: append#(nil(),ys) -> c_2() 3: attach#(x,cons(y,ys)) -> c_3(attach#(x,ys)) 4: attach#(x,nil()) -> c_4() 5: pairsp#(cons(x,xs)) -> c_5(append#(pairsp(xs),attach(x,xs)),pairsp#(xs),attach#(x,xs)) 6: pairsp#(nil()) -> c_6() * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: append#(cons(x,xs),ys) -> c_1(append#(xs,ys)) attach#(x,cons(y,ys)) -> c_3(attach#(x,ys)) pairsp#(cons(x,xs)) -> c_5(append#(pairsp(xs),attach(x,xs)),pairsp#(xs),attach#(x,xs)) - Weak DPs: append#(nil(),ys) -> c_2() attach#(x,nil()) -> c_4() pairsp#(nil()) -> c_6() - Weak TRS: append(cons(x,xs),ys) -> cons(x,append(xs,ys)) append(nil(),ys) -> ys attach(x,cons(y,ys)) -> cons(pair(x,y),attach(x,ys)) attach(x,nil()) -> nil() pairsp(cons(x,xs)) -> append(pairsp(xs),attach(x,xs)) pairsp(nil()) -> nil() - Signature: {append/2,attach/2,pairsp/1,append#/2,attach#/2,pairsp#/1} / {cons/2,nil/0,pair/2,c_1/1,c_2/0,c_3/1,c_4/0 ,c_5/3,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,attach#,pairsp#} and constructors {cons,nil,pair} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:append#(cons(x,xs),ys) -> c_1(append#(xs,ys)) -->_1 append#(nil(),ys) -> c_2():4 -->_1 append#(cons(x,xs),ys) -> c_1(append#(xs,ys)):1 2:S:attach#(x,cons(y,ys)) -> c_3(attach#(x,ys)) -->_1 attach#(x,nil()) -> c_4():5 -->_1 attach#(x,cons(y,ys)) -> c_3(attach#(x,ys)):2 3:S:pairsp#(cons(x,xs)) -> c_5(append#(pairsp(xs),attach(x,xs)),pairsp#(xs),attach#(x,xs)) -->_2 pairsp#(nil()) -> c_6():6 -->_3 attach#(x,nil()) -> c_4():5 -->_1 append#(nil(),ys) -> c_2():4 -->_2 pairsp#(cons(x,xs)) -> c_5(append#(pairsp(xs),attach(x,xs)),pairsp#(xs),attach#(x,xs)):3 -->_3 attach#(x,cons(y,ys)) -> c_3(attach#(x,ys)):2 -->_1 append#(cons(x,xs),ys) -> c_1(append#(xs,ys)):1 4:W:append#(nil(),ys) -> c_2() 5:W:attach#(x,nil()) -> c_4() 6:W:pairsp#(nil()) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: pairsp#(nil()) -> c_6() 5: attach#(x,nil()) -> c_4() 4: append#(nil(),ys) -> c_2() * Step 4: DecomposeDG WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: append#(cons(x,xs),ys) -> c_1(append#(xs,ys)) attach#(x,cons(y,ys)) -> c_3(attach#(x,ys)) pairsp#(cons(x,xs)) -> c_5(append#(pairsp(xs),attach(x,xs)),pairsp#(xs),attach#(x,xs)) - Weak TRS: append(cons(x,xs),ys) -> cons(x,append(xs,ys)) append(nil(),ys) -> ys attach(x,cons(y,ys)) -> cons(pair(x,y),attach(x,ys)) attach(x,nil()) -> nil() pairsp(cons(x,xs)) -> append(pairsp(xs),attach(x,xs)) pairsp(nil()) -> nil() - Signature: {append/2,attach/2,pairsp/1,append#/2,attach#/2,pairsp#/1} / {cons/2,nil/0,pair/2,c_1/1,c_2/0,c_3/1,c_4/0 ,c_5/3,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,attach#,pairsp#} and constructors {cons,nil,pair} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component pairsp#(cons(x,xs)) -> c_5(append#(pairsp(xs),attach(x,xs)),pairsp#(xs),attach#(x,xs)) and a lower component append#(cons(x,xs),ys) -> c_1(append#(xs,ys)) attach#(x,cons(y,ys)) -> c_3(attach#(x,ys)) Further, following extension rules are added to the lower component. pairsp#(cons(x,xs)) -> append#(pairsp(xs),attach(x,xs)) pairsp#(cons(x,xs)) -> attach#(x,xs) pairsp#(cons(x,xs)) -> pairsp#(xs) ** Step 4.a:1: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: pairsp#(cons(x,xs)) -> c_5(append#(pairsp(xs),attach(x,xs)),pairsp#(xs),attach#(x,xs)) - Weak TRS: append(cons(x,xs),ys) -> cons(x,append(xs,ys)) append(nil(),ys) -> ys attach(x,cons(y,ys)) -> cons(pair(x,y),attach(x,ys)) attach(x,nil()) -> nil() pairsp(cons(x,xs)) -> append(pairsp(xs),attach(x,xs)) pairsp(nil()) -> nil() - Signature: {append/2,attach/2,pairsp/1,append#/2,attach#/2,pairsp#/1} / {cons/2,nil/0,pair/2,c_1/1,c_2/0,c_3/1,c_4/0 ,c_5/3,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,attach#,pairsp#} and constructors {cons,nil,pair} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:pairsp#(cons(x,xs)) -> c_5(append#(pairsp(xs),attach(x,xs)),pairsp#(xs),attach#(x,xs)) -->_2 pairsp#(cons(x,xs)) -> c_5(append#(pairsp(xs),attach(x,xs)),pairsp#(xs),attach#(x,xs)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: pairsp#(cons(x,xs)) -> c_5(pairsp#(xs)) ** Step 4.a:2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: pairsp#(cons(x,xs)) -> c_5(pairsp#(xs)) - Weak TRS: append(cons(x,xs),ys) -> cons(x,append(xs,ys)) append(nil(),ys) -> ys attach(x,cons(y,ys)) -> cons(pair(x,y),attach(x,ys)) attach(x,nil()) -> nil() pairsp(cons(x,xs)) -> append(pairsp(xs),attach(x,xs)) pairsp(nil()) -> nil() - Signature: {append/2,attach/2,pairsp/1,append#/2,attach#/2,pairsp#/1} / {cons/2,nil/0,pair/2,c_1/1,c_2/0,c_3/1,c_4/0 ,c_5/1,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,attach#,pairsp#} and constructors {cons,nil,pair} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: pairsp#(cons(x,xs)) -> c_5(pairsp#(xs)) ** Step 4.a:3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: pairsp#(cons(x,xs)) -> c_5(pairsp#(xs)) - Signature: {append/2,attach/2,pairsp/1,append#/2,attach#/2,pairsp#/1} / {cons/2,nil/0,pair/2,c_1/1,c_2/0,c_3/1,c_4/0 ,c_5/1,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,attach#,pairsp#} and constructors {cons,nil,pair} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(append) = [2] x1 + [1] x2 + [1] p(attach) = [2] x1 + [1] p(cons) = [1] x2 + [1] p(nil) = [2] p(pair) = [1] x2 + [2] p(pairsp) = [1] p(append#) = [4] p(attach#) = [1] x2 + [1] p(pairsp#) = [1] x1 + [0] p(c_1) = [1] p(c_2) = [0] p(c_3) = [1] x1 + [1] p(c_4) = [8] p(c_5) = [1] x1 + [0] p(c_6) = [2] Following rules are strictly oriented: pairsp#(cons(x,xs)) = [1] xs + [1] > [1] xs + [0] = c_5(pairsp#(xs)) Following rules are (at-least) weakly oriented: Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 4.a:4: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: pairsp#(cons(x,xs)) -> c_5(pairsp#(xs)) - Signature: {append/2,attach/2,pairsp/1,append#/2,attach#/2,pairsp#/1} / {cons/2,nil/0,pair/2,c_1/1,c_2/0,c_3/1,c_4/0 ,c_5/1,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,attach#,pairsp#} and constructors {cons,nil,pair} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 4.b:1: NaturalMI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: append#(cons(x,xs),ys) -> c_1(append#(xs,ys)) attach#(x,cons(y,ys)) -> c_3(attach#(x,ys)) - Weak DPs: pairsp#(cons(x,xs)) -> append#(pairsp(xs),attach(x,xs)) pairsp#(cons(x,xs)) -> attach#(x,xs) pairsp#(cons(x,xs)) -> pairsp#(xs) - Weak TRS: append(cons(x,xs),ys) -> cons(x,append(xs,ys)) append(nil(),ys) -> ys attach(x,cons(y,ys)) -> cons(pair(x,y),attach(x,ys)) attach(x,nil()) -> nil() pairsp(cons(x,xs)) -> append(pairsp(xs),attach(x,xs)) pairsp(nil()) -> nil() - Signature: {append/2,attach/2,pairsp/1,append#/2,attach#/2,pairsp#/1} / {cons/2,nil/0,pair/2,c_1/1,c_2/0,c_3/1,c_4/0 ,c_5/3,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,attach#,pairsp#} and constructors {cons,nil,pair} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_3) = {1} Following symbols are considered usable: {append#,attach#,pairsp#} TcT has computed the following interpretation: p(append) = [2] x1 + [0] p(attach) = [1] x2 + [0] p(cons) = [1] x1 + [1] x2 + [6] p(nil) = [3] p(pair) = [1] x1 + [0] p(pairsp) = [1] x1 + [13] p(append#) = [0] p(attach#) = [5] x1 + [1] x2 + [10] p(pairsp#) = [5] x1 + [1] p(c_1) = [8] x1 + [0] p(c_2) = [1] p(c_3) = [1] x1 + [2] p(c_4) = [0] p(c_5) = [2] x3 + [0] p(c_6) = [0] Following rules are strictly oriented: attach#(x,cons(y,ys)) = [5] x + [1] y + [1] ys + [16] > [5] x + [1] ys + [12] = c_3(attach#(x,ys)) Following rules are (at-least) weakly oriented: append#(cons(x,xs),ys) = [0] >= [0] = c_1(append#(xs,ys)) pairsp#(cons(x,xs)) = [5] x + [5] xs + [31] >= [0] = append#(pairsp(xs),attach(x,xs)) pairsp#(cons(x,xs)) = [5] x + [5] xs + [31] >= [5] x + [1] xs + [10] = attach#(x,xs) pairsp#(cons(x,xs)) = [5] x + [5] xs + [31] >= [5] xs + [1] = pairsp#(xs) ** Step 4.b:2: Ara WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: append#(cons(x,xs),ys) -> c_1(append#(xs,ys)) - Weak DPs: attach#(x,cons(y,ys)) -> c_3(attach#(x,ys)) pairsp#(cons(x,xs)) -> append#(pairsp(xs),attach(x,xs)) pairsp#(cons(x,xs)) -> attach#(x,xs) pairsp#(cons(x,xs)) -> pairsp#(xs) - Weak TRS: append(cons(x,xs),ys) -> cons(x,append(xs,ys)) append(nil(),ys) -> ys attach(x,cons(y,ys)) -> cons(pair(x,y),attach(x,ys)) attach(x,nil()) -> nil() pairsp(cons(x,xs)) -> append(pairsp(xs),attach(x,xs)) pairsp(nil()) -> nil() - Signature: {append/2,attach/2,pairsp/1,append#/2,attach#/2,pairsp#/1} / {cons/2,nil/0,pair/2,c_1/1,c_2/0,c_3/1,c_4/0 ,c_5/3,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,attach#,pairsp#} and constructors {cons,nil,pair} + Applied Processor: Ara {araHeuristics = NoHeuristics, minDegree = 2, maxDegree = 2, araTimeout = 8, araRuleShifting = Just 1} + Details: Signatures used: ---------------- append :: ["A"(1, 0) x "A"(1, 0)] -(1)-> "A"(1, 0) attach :: ["A"(0, 0) x "A"(1, 0)] -(2)-> "A"(1, 0) cons :: ["A"(0, 0) x "A"(1, 0)] -(1)-> "A"(1, 0) cons :: ["A"(0, 0) x "A"(7, 7)] -(7)-> "A"(0, 7) cons :: ["A"(0, 0) x "A"(4, 0)] -(4)-> "A"(4, 0) cons :: ["A"(0, 0) x "A"(15, 15)] -(15)-> "A"(0, 15) nil :: [] -(0)-> "A"(1, 0) nil :: [] -(0)-> "A"(0, 7) nil :: [] -(0)-> "A"(7, 7) pair :: ["A"(0, 0) x "A"(0, 0)] -(0)-> "A"(4, 8) pairsp :: ["A"(0, 7)] -(5)-> "A"(1, 0) append# :: ["A"(1, 0) x "A"(1, 0)] -(0)-> "A"(8, 6) attach# :: ["A"(0, 0) x "A"(4, 0)] -(15)-> "A"(1, 1) pairsp# :: ["A"(0, 15)] -(10)-> "A"(0, 1) c_1 :: ["A"(6, 6)] -(0)-> "A"(11, 6) c_3 :: ["A"(0, 0)] -(3)-> "A"(3, 8) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- "c_1_A" :: ["A"(0)] -(0)-> "A"(1, 0) "c_1_A" :: ["A"(0)] -(0)-> "A"(0, 1) "c_3_A" :: ["A"(0)] -(1)-> "A"(1, 0) "c_3_A" :: ["A"(0)] -(0)-> "A"(0, 1) "cons_A" :: ["A"(0, 0) x "A"(1, 0)] -(1)-> "A"(1, 0) "cons_A" :: ["A"(0, 0) x "A"(1, 1)] -(1)-> "A"(0, 1) "nil_A" :: [] -(0)-> "A"(1, 0) "nil_A" :: [] -(0)-> "A"(0, 1) "pair_A" :: ["A"(0, 0) x "A"(0, 0)] -(0)-> "A"(1, 0) "pair_A" :: ["A"(0, 0) x "A"(0, 0)] -(0)-> "A"(0, 1) Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: append#(cons(x,xs),ys) -> c_1(append#(xs,ys)) 2. Weak: WORST_CASE(?,O(n^3))