WORST_CASE(?,O(n^3)) * Step 1: DependencyPairs WORST_CASE(?,O(n^3)) + Considered Problem: - Strict TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() shuffle(dd(x,xs)) -> dd(x,shuffle(rev(xs))) shuffle(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1} / {dd/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {@,rev,shuffle} and constructors {dd,nil} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) @#(nil(),ys) -> c_2() rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) rev#(nil()) -> c_4() shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) shuffle#(nil()) -> c_6() Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) @#(nil(),ys) -> c_2() rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) rev#(nil()) -> c_4() shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) shuffle#(nil()) -> c_6() - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() shuffle(dd(x,xs)) -> dd(x,shuffle(rev(xs))) shuffle(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,4,6} by application of Pre({2,4,6}) = {1,3,5}. Here rules are labelled as follows: 1: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) 2: @#(nil(),ys) -> c_2() 3: rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) 4: rev#(nil()) -> c_4() 5: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) 6: shuffle#(nil()) -> c_6() * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak DPs: @#(nil(),ys) -> c_2() rev#(nil()) -> c_4() shuffle#(nil()) -> c_6() - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() shuffle(dd(x,xs)) -> dd(x,shuffle(rev(xs))) shuffle(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:@#(dd(x,xs),ys) -> c_1(@#(xs,ys)) -->_1 @#(nil(),ys) -> c_2():4 -->_1 @#(dd(x,xs),ys) -> c_1(@#(xs,ys)):1 2:S:rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) -->_2 rev#(nil()) -> c_4():5 -->_1 @#(nil(),ys) -> c_2():4 -->_2 rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)):2 -->_1 @#(dd(x,xs),ys) -> c_1(@#(xs,ys)):1 3:S:shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) -->_1 shuffle#(nil()) -> c_6():6 -->_2 rev#(nil()) -> c_4():5 -->_1 shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)):3 -->_2 rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)):2 4:W:@#(nil(),ys) -> c_2() 5:W:rev#(nil()) -> c_4() 6:W:shuffle#(nil()) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: shuffle#(nil()) -> c_6() 5: rev#(nil()) -> c_4() 4: @#(nil(),ys) -> c_2() * Step 4: UsableRules WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() shuffle(dd(x,xs)) -> dd(x,shuffle(rev(xs))) shuffle(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) * Step 5: DecomposeDG WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) and a lower component @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) Further, following extension rules are added to the lower component. shuffle#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) ** Step 5.a:1: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) -->_1 shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs))) ** Step 5.a:2: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs))) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/1,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(@) = {1}, uargs(dd) = {2}, uargs(shuffle#) = {1}, uargs(c_5) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(@) = [1] x1 + [1] x2 + [0] p(dd) = [1] x2 + [2] p(nil) = [0] p(rev) = [1] x1 + [0] p(shuffle) = [1] x1 + [2] p(@#) = [1] x1 + [1] x2 + [0] p(rev#) = [4] p(shuffle#) = [1] x1 + [1] p(c_1) = [8] x1 + [0] p(c_2) = [2] p(c_3) = [0] p(c_4) = [1] p(c_5) = [1] x1 + [1] p(c_6) = [0] Following rules are strictly oriented: shuffle#(dd(x,xs)) = [1] xs + [3] > [1] xs + [2] = c_5(shuffle#(rev(xs))) Following rules are (at-least) weakly oriented: @(dd(x,xs),ys) = [1] xs + [1] ys + [2] >= [1] xs + [1] ys + [2] = dd(x,@(xs,ys)) @(nil(),ys) = [1] ys + [0] >= [1] ys + [0] = ys rev(dd(x,xs)) = [1] xs + [2] >= [1] xs + [2] = @(rev(xs),dd(x,nil())) rev(nil()) = [0] >= [0] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 5.a:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs))) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/1,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 5.b:1: DecomposeDG WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) - Weak DPs: shuffle#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) and a lower component @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) Further, following extension rules are added to the lower component. rev#(dd(x,xs)) -> @#(rev(xs),dd(x,nil())) rev#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) *** Step 5.b:1.a:1: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) - Weak DPs: shuffle#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) -->_2 rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)):1 2:W:shuffle#(dd(x,xs)) -> rev#(xs) -->_1 rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)):1 3:W:shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) -->_1 shuffle#(dd(x,xs)) -> shuffle#(rev(xs)):3 -->_1 shuffle#(dd(x,xs)) -> rev#(xs):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: rev#(dd(x,xs)) -> c_3(rev#(xs)) *** Step 5.b:1.a:2: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: rev#(dd(x,xs)) -> c_3(rev#(xs)) - Weak DPs: shuffle#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(@) = {1}, uargs(dd) = {2}, uargs(shuffle#) = {1}, uargs(c_3) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(@) = [1] x1 + [1] x2 + [0] p(dd) = [1] x2 + [8] p(nil) = [0] p(rev) = [1] x1 + [8] p(shuffle) = [1] p(@#) = [1] p(rev#) = [1] x1 + [2] p(shuffle#) = [1] x1 + [8] p(c_1) = [1] p(c_2) = [1] p(c_3) = [1] x1 + [0] p(c_4) = [0] p(c_5) = [1] x1 + [1] p(c_6) = [1] Following rules are strictly oriented: rev#(dd(x,xs)) = [1] xs + [10] > [1] xs + [2] = c_3(rev#(xs)) Following rules are (at-least) weakly oriented: shuffle#(dd(x,xs)) = [1] xs + [16] >= [1] xs + [2] = rev#(xs) shuffle#(dd(x,xs)) = [1] xs + [16] >= [1] xs + [16] = shuffle#(rev(xs)) @(dd(x,xs),ys) = [1] xs + [1] ys + [8] >= [1] xs + [1] ys + [8] = dd(x,@(xs,ys)) @(nil(),ys) = [1] ys + [0] >= [1] ys + [0] = ys rev(dd(x,xs)) = [1] xs + [16] >= [1] xs + [16] = @(rev(xs),dd(x,nil())) rev(nil()) = [8] >= [0] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** Step 5.b:1.a:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: rev#(dd(x,xs)) -> c_3(rev#(xs)) shuffle#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 5.b:1.b:1: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) - Weak DPs: rev#(dd(x,xs)) -> @#(rev(xs),dd(x,nil())) rev#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(@) = {1}, uargs(dd) = {2}, uargs(@#) = {1}, uargs(shuffle#) = {1}, uargs(c_1) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(@) = [1] x1 + [1] x2 + [0] p(dd) = [1] x1 + [1] x2 + [4] p(nil) = [0] p(rev) = [1] x1 + [2] p(shuffle) = [1] p(@#) = [1] x1 + [1] p(rev#) = [1] x1 + [0] p(shuffle#) = [1] x1 + [0] p(c_1) = [1] x1 + [1] p(c_2) = [1] p(c_3) = [2] x2 + [1] p(c_4) = [1] p(c_5) = [1] x1 + [4] x2 + [4] p(c_6) = [0] Following rules are strictly oriented: @#(dd(x,xs),ys) = [1] x + [1] xs + [5] > [1] xs + [2] = c_1(@#(xs,ys)) Following rules are (at-least) weakly oriented: rev#(dd(x,xs)) = [1] x + [1] xs + [4] >= [1] xs + [3] = @#(rev(xs),dd(x,nil())) rev#(dd(x,xs)) = [1] x + [1] xs + [4] >= [1] xs + [0] = rev#(xs) shuffle#(dd(x,xs)) = [1] x + [1] xs + [4] >= [1] xs + [0] = rev#(xs) shuffle#(dd(x,xs)) = [1] x + [1] xs + [4] >= [1] xs + [2] = shuffle#(rev(xs)) @(dd(x,xs),ys) = [1] x + [1] xs + [1] ys + [4] >= [1] x + [1] xs + [1] ys + [4] = dd(x,@(xs,ys)) @(nil(),ys) = [1] ys + [0] >= [1] ys + [0] = ys rev(dd(x,xs)) = [1] x + [1] xs + [6] >= [1] x + [1] xs + [6] = @(rev(xs),dd(x,nil())) rev(nil()) = [2] >= [0] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** Step 5.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) rev#(dd(x,xs)) -> @#(rev(xs),dd(x,nil())) rev#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^3))