WORST_CASE(?,O(n^2)) * Step 1: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: div(x,y) -> h(x,y,y) egypt(div'(0(),y)) -> nil() egypt(div'(s(x),y)) -> app(div(y,s(x)),egypt(i(div'(s(x),y),div'(s(0()),div(y,s(x)))))) h(s(0()),y,z) -> s(0()) h(s(s(x)),s(0()),z) -> s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) -> h(s(x),s(y),z) i(div'(x,y),div'(u,v)) -> div'(minus(mult(x,v),mult(y,u)),mult(y,v)) - Signature: {div/2,egypt/1,h/3,i/2} / {0/0,app/2,div'/2,minus/2,mult/2,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {div,egypt,h,i} and constructors {0,app,div',minus,mult ,nil,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs div#(x,y) -> c_1(h#(x,y,y)) egypt#(div'(0(),y)) -> c_2() egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)) ,egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) ,i#(div'(s(x),y),div'(s(0()),div(y,s(x)))) ,div#(y,s(x))) h#(s(0()),y,z) -> c_4() h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)) h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)) i#(div'(x,y),div'(u,v)) -> c_7() Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(h#(x,y,y)) egypt#(div'(0(),y)) -> c_2() egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)) ,egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) ,i#(div'(s(x),y),div'(s(0()),div(y,s(x)))) ,div#(y,s(x))) h#(s(0()),y,z) -> c_4() h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)) h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)) i#(div'(x,y),div'(u,v)) -> c_7() - Weak TRS: div(x,y) -> h(x,y,y) egypt(div'(0(),y)) -> nil() egypt(div'(s(x),y)) -> app(div(y,s(x)),egypt(i(div'(s(x),y),div'(s(0()),div(y,s(x)))))) h(s(0()),y,z) -> s(0()) h(s(s(x)),s(0()),z) -> s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) -> h(s(x),s(y),z) i(div'(x,y),div'(u,v)) -> div'(minus(mult(x,v),mult(y,u)),mult(y,v)) - Signature: {div/2,egypt/1,h/3,i/2,div#/2,egypt#/1,h#/3,i#/2} / {0/0,app/2,div'/2,minus/2,mult/2,nil/0,s/1,c_1/1,c_2/0 ,c_3/4,c_4/0,c_5/1,c_6/1,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,egypt#,h#,i#} and constructors {0,app,div',minus ,mult,nil,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,4,7} by application of Pre({2,4,7}) = {1,3,5,6}. Here rules are labelled as follows: 1: div#(x,y) -> c_1(h#(x,y,y)) 2: egypt#(div'(0(),y)) -> c_2() 3: egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)) ,egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) ,i#(div'(s(x),y),div'(s(0()),div(y,s(x)))) ,div#(y,s(x))) 4: h#(s(0()),y,z) -> c_4() 5: h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)) 6: h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)) 7: i#(div'(x,y),div'(u,v)) -> c_7() * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(h#(x,y,y)) egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)) ,egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) ,i#(div'(s(x),y),div'(s(0()),div(y,s(x)))) ,div#(y,s(x))) h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)) h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)) - Weak DPs: egypt#(div'(0(),y)) -> c_2() h#(s(0()),y,z) -> c_4() i#(div'(x,y),div'(u,v)) -> c_7() - Weak TRS: div(x,y) -> h(x,y,y) egypt(div'(0(),y)) -> nil() egypt(div'(s(x),y)) -> app(div(y,s(x)),egypt(i(div'(s(x),y),div'(s(0()),div(y,s(x)))))) h(s(0()),y,z) -> s(0()) h(s(s(x)),s(0()),z) -> s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) -> h(s(x),s(y),z) i(div'(x,y),div'(u,v)) -> div'(minus(mult(x,v),mult(y,u)),mult(y,v)) - Signature: {div/2,egypt/1,h/3,i/2,div#/2,egypt#/1,h#/3,i#/2} / {0/0,app/2,div'/2,minus/2,mult/2,nil/0,s/1,c_1/1,c_2/0 ,c_3/4,c_4/0,c_5/1,c_6/1,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,egypt#,h#,i#} and constructors {0,app,div',minus ,mult,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:div#(x,y) -> c_1(h#(x,y,y)) -->_1 h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)):4 -->_1 h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)):3 -->_1 h#(s(0()),y,z) -> c_4():6 2:S:egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)) ,egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) ,i#(div'(s(x),y),div'(s(0()),div(y,s(x)))) ,div#(y,s(x))) -->_3 i#(div'(x,y),div'(u,v)) -> c_7():7 -->_2 egypt#(div'(0(),y)) -> c_2():5 -->_2 egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)) ,egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) ,i#(div'(s(x),y),div'(s(0()),div(y,s(x)))) ,div#(y,s(x))):2 -->_4 div#(x,y) -> c_1(h#(x,y,y)):1 -->_1 div#(x,y) -> c_1(h#(x,y,y)):1 3:S:h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)) -->_1 h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)):4 -->_1 h#(s(0()),y,z) -> c_4():6 -->_1 h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)):3 4:S:h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)) -->_1 h#(s(0()),y,z) -> c_4():6 -->_1 h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)):4 -->_1 h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)):3 5:W:egypt#(div'(0(),y)) -> c_2() 6:W:h#(s(0()),y,z) -> c_4() 7:W:i#(div'(x,y),div'(u,v)) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: egypt#(div'(0(),y)) -> c_2() 7: i#(div'(x,y),div'(u,v)) -> c_7() 6: h#(s(0()),y,z) -> c_4() * Step 4: SimplifyRHS WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(h#(x,y,y)) egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)) ,egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) ,i#(div'(s(x),y),div'(s(0()),div(y,s(x)))) ,div#(y,s(x))) h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)) h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)) - Weak TRS: div(x,y) -> h(x,y,y) egypt(div'(0(),y)) -> nil() egypt(div'(s(x),y)) -> app(div(y,s(x)),egypt(i(div'(s(x),y),div'(s(0()),div(y,s(x)))))) h(s(0()),y,z) -> s(0()) h(s(s(x)),s(0()),z) -> s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) -> h(s(x),s(y),z) i(div'(x,y),div'(u,v)) -> div'(minus(mult(x,v),mult(y,u)),mult(y,v)) - Signature: {div/2,egypt/1,h/3,i/2,div#/2,egypt#/1,h#/3,i#/2} / {0/0,app/2,div'/2,minus/2,mult/2,nil/0,s/1,c_1/1,c_2/0 ,c_3/4,c_4/0,c_5/1,c_6/1,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,egypt#,h#,i#} and constructors {0,app,div',minus ,mult,nil,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:div#(x,y) -> c_1(h#(x,y,y)) -->_1 h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)):4 -->_1 h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)):3 2:S:egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)) ,egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) ,i#(div'(s(x),y),div'(s(0()),div(y,s(x)))) ,div#(y,s(x))) -->_2 egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)) ,egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) ,i#(div'(s(x),y),div'(s(0()),div(y,s(x)))) ,div#(y,s(x))):2 -->_4 div#(x,y) -> c_1(h#(x,y,y)):1 -->_1 div#(x,y) -> c_1(h#(x,y,y)):1 3:S:h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)) -->_1 h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)):4 -->_1 h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)):3 4:S:h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)) -->_1 h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)):4 -->_1 h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)):3 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)),egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))),div#(y,s(x))) * Step 5: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(h#(x,y,y)) egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)),egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))),div#(y,s(x))) h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)) h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)) - Weak TRS: div(x,y) -> h(x,y,y) egypt(div'(0(),y)) -> nil() egypt(div'(s(x),y)) -> app(div(y,s(x)),egypt(i(div'(s(x),y),div'(s(0()),div(y,s(x)))))) h(s(0()),y,z) -> s(0()) h(s(s(x)),s(0()),z) -> s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) -> h(s(x),s(y),z) i(div'(x,y),div'(u,v)) -> div'(minus(mult(x,v),mult(y,u)),mult(y,v)) - Signature: {div/2,egypt/1,h/3,i/2,div#/2,egypt#/1,h#/3,i#/2} / {0/0,app/2,div'/2,minus/2,mult/2,nil/0,s/1,c_1/1,c_2/0 ,c_3/3,c_4/0,c_5/1,c_6/1,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,egypt#,h#,i#} and constructors {0,app,div',minus ,mult,nil,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: div(x,y) -> h(x,y,y) h(s(0()),y,z) -> s(0()) h(s(s(x)),s(0()),z) -> s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) -> h(s(x),s(y),z) i(div'(x,y),div'(u,v)) -> div'(minus(mult(x,v),mult(y,u)),mult(y,v)) div#(x,y) -> c_1(h#(x,y,y)) egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)),egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))),div#(y,s(x))) h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)) h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)) * Step 6: DecomposeDG WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(h#(x,y,y)) egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)),egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))),div#(y,s(x))) h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)) h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)) - Weak TRS: div(x,y) -> h(x,y,y) h(s(0()),y,z) -> s(0()) h(s(s(x)),s(0()),z) -> s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) -> h(s(x),s(y),z) i(div'(x,y),div'(u,v)) -> div'(minus(mult(x,v),mult(y,u)),mult(y,v)) - Signature: {div/2,egypt/1,h/3,i/2,div#/2,egypt#/1,h#/3,i#/2} / {0/0,app/2,div'/2,minus/2,mult/2,nil/0,s/1,c_1/1,c_2/0 ,c_3/3,c_4/0,c_5/1,c_6/1,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,egypt#,h#,i#} and constructors {0,app,div',minus ,mult,nil,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)),egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))),div#(y,s(x))) and a lower component div#(x,y) -> c_1(h#(x,y,y)) h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)) h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)) Further, following extension rules are added to the lower component. egypt#(div'(s(x),y)) -> div#(y,s(x)) egypt#(div'(s(x),y)) -> egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) ** Step 6.a:1: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)),egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))),div#(y,s(x))) - Weak TRS: div(x,y) -> h(x,y,y) h(s(0()),y,z) -> s(0()) h(s(s(x)),s(0()),z) -> s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) -> h(s(x),s(y),z) i(div'(x,y),div'(u,v)) -> div'(minus(mult(x,v),mult(y,u)),mult(y,v)) - Signature: {div/2,egypt/1,h/3,i/2,div#/2,egypt#/1,h#/3,i#/2} / {0/0,app/2,div'/2,minus/2,mult/2,nil/0,s/1,c_1/1,c_2/0 ,c_3/3,c_4/0,c_5/1,c_6/1,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,egypt#,h#,i#} and constructors {0,app,div',minus ,mult,nil,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)) ,egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) ,div#(y,s(x))) -->_2 egypt#(div'(s(x),y)) -> c_3(div#(y,s(x)) ,egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) ,div#(y,s(x))):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: egypt#(div'(s(x),y)) -> c_3(egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x)))))) ** Step 6.a:2: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: egypt#(div'(s(x),y)) -> c_3(egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x)))))) - Weak TRS: div(x,y) -> h(x,y,y) h(s(0()),y,z) -> s(0()) h(s(s(x)),s(0()),z) -> s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) -> h(s(x),s(y),z) i(div'(x,y),div'(u,v)) -> div'(minus(mult(x,v),mult(y,u)),mult(y,v)) - Signature: {div/2,egypt/1,h/3,i/2,div#/2,egypt#/1,h#/3,i#/2} / {0/0,app/2,div'/2,minus/2,mult/2,nil/0,s/1,c_1/1,c_2/0 ,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,egypt#,h#,i#} and constructors {0,app,div',minus ,mult,nil,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1} Following symbols are considered usable: {i,div#,egypt#,h#,i#} TcT has computed the following interpretation: p(0) = [8] p(app) = [1] p(div) = [1] x2 + [1] p(div') = [1] x1 + [1] x2 + [0] p(egypt) = [1] p(h) = [2] p(i) = [2] p(minus) = [2] p(mult) = [0] p(nil) = [1] p(s) = [1] x1 + [8] p(div#) = [2] x2 + [0] p(egypt#) = [2] x1 + [0] p(h#) = [2] x1 + [1] p(i#) = [1] x1 + [0] p(c_1) = [1] x1 + [1] p(c_2) = [1] p(c_3) = [2] x1 + [0] p(c_4) = [1] p(c_5) = [2] x1 + [1] p(c_6) = [1] x1 + [1] p(c_7) = [1] Following rules are strictly oriented: egypt#(div'(s(x),y)) = [2] x + [2] y + [16] > [8] = c_3(egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x)))))) Following rules are (at-least) weakly oriented: i(div'(x,y),div'(u,v)) = [2] >= [2] = div'(minus(mult(x,v),mult(y,u)),mult(y,v)) ** Step 6.a:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: egypt#(div'(s(x),y)) -> c_3(egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x)))))) - Weak TRS: div(x,y) -> h(x,y,y) h(s(0()),y,z) -> s(0()) h(s(s(x)),s(0()),z) -> s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) -> h(s(x),s(y),z) i(div'(x,y),div'(u,v)) -> div'(minus(mult(x,v),mult(y,u)),mult(y,v)) - Signature: {div/2,egypt/1,h/3,i/2,div#/2,egypt#/1,h#/3,i#/2} / {0/0,app/2,div'/2,minus/2,mult/2,nil/0,s/1,c_1/1,c_2/0 ,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,egypt#,h#,i#} and constructors {0,app,div',minus ,mult,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 6.b:1: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(h#(x,y,y)) h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)) h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)) - Weak DPs: egypt#(div'(s(x),y)) -> div#(y,s(x)) egypt#(div'(s(x),y)) -> egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) - Weak TRS: div(x,y) -> h(x,y,y) h(s(0()),y,z) -> s(0()) h(s(s(x)),s(0()),z) -> s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) -> h(s(x),s(y),z) i(div'(x,y),div'(u,v)) -> div'(minus(mult(x,v),mult(y,u)),mult(y,v)) - Signature: {div/2,egypt/1,h/3,i/2,div#/2,egypt#/1,h#/3,i#/2} / {0/0,app/2,div'/2,minus/2,mult/2,nil/0,s/1,c_1/1,c_2/0 ,c_3/3,c_4/0,c_5/1,c_6/1,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,egypt#,h#,i#} and constructors {0,app,div',minus ,mult,nil,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(div') = {2}, uargs(i) = {2}, uargs(s) = {1}, uargs(egypt#) = {1}, uargs(c_1) = {1}, uargs(c_5) = {1}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(app) = [1] x2 + [4] p(div) = [0] p(div') = [1] x2 + [2] p(egypt) = [1] p(h) = [0] p(i) = [1] x2 + [0] p(minus) = [1] x2 + [1] p(mult) = [0] p(nil) = [2] p(s) = [1] x1 + [0] p(div#) = [1] x1 + [2] p(egypt#) = [1] x1 + [0] p(h#) = [0] p(i#) = [1] x1 + [2] x2 + [0] p(c_1) = [1] x1 + [0] p(c_2) = [0] p(c_3) = [1] x1 + [4] x3 + [0] p(c_4) = [0] p(c_5) = [1] x1 + [4] p(c_6) = [1] x1 + [1] p(c_7) = [1] Following rules are strictly oriented: div#(x,y) = [1] x + [2] > [0] = c_1(h#(x,y,y)) Following rules are (at-least) weakly oriented: egypt#(div'(s(x),y)) = [1] y + [2] >= [1] y + [2] = div#(y,s(x)) egypt#(div'(s(x),y)) = [1] y + [2] >= [2] = egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) h#(s(s(x)),s(0()),z) = [0] >= [4] = c_5(h#(s(x),z,z)) h#(s(s(x)),s(s(y)),z) = [0] >= [1] = c_6(h#(s(x),s(y),z)) div(x,y) = [0] >= [0] = h(x,y,y) h(s(0()),y,z) = [0] >= [0] = s(0()) h(s(s(x)),s(0()),z) = [0] >= [0] = s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) = [0] >= [0] = h(s(x),s(y),z) i(div'(x,y),div'(u,v)) = [1] v + [2] >= [2] = div'(minus(mult(x,v),mult(y,u)),mult(y,v)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 6.b:2: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)) h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)) - Weak DPs: div#(x,y) -> c_1(h#(x,y,y)) egypt#(div'(s(x),y)) -> div#(y,s(x)) egypt#(div'(s(x),y)) -> egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) - Weak TRS: div(x,y) -> h(x,y,y) h(s(0()),y,z) -> s(0()) h(s(s(x)),s(0()),z) -> s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) -> h(s(x),s(y),z) i(div'(x,y),div'(u,v)) -> div'(minus(mult(x,v),mult(y,u)),mult(y,v)) - Signature: {div/2,egypt/1,h/3,i/2,div#/2,egypt#/1,h#/3,i#/2} / {0/0,app/2,div'/2,minus/2,mult/2,nil/0,s/1,c_1/1,c_2/0 ,c_3/3,c_4/0,c_5/1,c_6/1,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,egypt#,h#,i#} and constructors {0,app,div',minus ,mult,nil,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(div') = {2}, uargs(i) = {2}, uargs(s) = {1}, uargs(egypt#) = {1}, uargs(c_1) = {1}, uargs(c_5) = {1}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(app) = [2] p(div) = [1] x1 + [0] p(div') = [1] x2 + [5] p(egypt) = [2] x1 + [1] p(h) = [1] x1 + [0] p(i) = [1] x2 + [0] p(minus) = [1] x2 + [7] p(mult) = [0] p(nil) = [1] p(s) = [1] x1 + [4] p(div#) = [1] x1 + [2] p(egypt#) = [1] x1 + [0] p(h#) = [1] x1 + [1] p(i#) = [2] x2 + [1] p(c_1) = [1] x1 + [0] p(c_2) = [1] p(c_3) = [1] x1 + [2] x2 + [4] x3 + [1] p(c_4) = [0] p(c_5) = [1] x1 + [3] p(c_6) = [1] x1 + [0] p(c_7) = [0] Following rules are strictly oriented: h#(s(s(x)),s(0()),z) = [1] x + [9] > [1] x + [8] = c_5(h#(s(x),z,z)) h#(s(s(x)),s(s(y)),z) = [1] x + [9] > [1] x + [5] = c_6(h#(s(x),s(y),z)) Following rules are (at-least) weakly oriented: div#(x,y) = [1] x + [2] >= [1] x + [1] = c_1(h#(x,y,y)) egypt#(div'(s(x),y)) = [1] y + [5] >= [1] y + [2] = div#(y,s(x)) egypt#(div'(s(x),y)) = [1] y + [5] >= [1] y + [5] = egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) div(x,y) = [1] x + [0] >= [1] x + [0] = h(x,y,y) h(s(0()),y,z) = [4] >= [4] = s(0()) h(s(s(x)),s(0()),z) = [1] x + [8] >= [1] x + [8] = s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) = [1] x + [8] >= [1] x + [4] = h(s(x),s(y),z) i(div'(x,y),div'(u,v)) = [1] v + [5] >= [5] = div'(minus(mult(x,v),mult(y,u)),mult(y,v)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 6.b:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: div#(x,y) -> c_1(h#(x,y,y)) egypt#(div'(s(x),y)) -> div#(y,s(x)) egypt#(div'(s(x),y)) -> egypt#(i(div'(s(x),y),div'(s(0()),div(y,s(x))))) h#(s(s(x)),s(0()),z) -> c_5(h#(s(x),z,z)) h#(s(s(x)),s(s(y)),z) -> c_6(h#(s(x),s(y),z)) - Weak TRS: div(x,y) -> h(x,y,y) h(s(0()),y,z) -> s(0()) h(s(s(x)),s(0()),z) -> s(h(s(x),z,z)) h(s(s(x)),s(s(y)),z) -> h(s(x),s(y),z) i(div'(x,y),div'(u,v)) -> div'(minus(mult(x,v),mult(y,u)),mult(y,v)) - Signature: {div/2,egypt/1,h/3,i/2,div#/2,egypt#/1,h#/3,i#/2} / {0/0,app/2,div'/2,minus/2,mult/2,nil/0,s/1,c_1/1,c_2/0 ,c_3/3,c_4/0,c_5/1,c_6/1,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,egypt#,h#,i#} and constructors {0,app,div',minus ,mult,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))