WORST_CASE(?,O(n^1)) * Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(cons(x,k),l) -> g(k,l,cons(x,k)) f(empty(),l) -> l g(a,b,c) -> f(a,cons(b,c)) - Signature: {f/2,g/3} / {cons/2,empty/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {cons,empty} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2() g#(a,b,c) -> c_3(f#(a,cons(b,c))) Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2() g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Weak TRS: f(cons(x,k),l) -> g(k,l,cons(x,k)) f(empty(),l) -> l g(a,b,c) -> f(a,cons(b,c)) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2} by application of Pre({2}) = {3}. Here rules are labelled as follows: 1: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) 2: f#(empty(),l) -> c_2() 3: g#(a,b,c) -> c_3(f#(a,cons(b,c))) * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Weak DPs: f#(empty(),l) -> c_2() - Weak TRS: f(cons(x,k),l) -> g(k,l,cons(x,k)) f(empty(),l) -> l g(a,b,c) -> f(a,cons(b,c)) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) -->_1 g#(a,b,c) -> c_3(f#(a,cons(b,c))):2 2:S:g#(a,b,c) -> c_3(f#(a,cons(b,c))) -->_1 f#(empty(),l) -> c_2():3 -->_1 f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))):1 3:W:f#(empty(),l) -> c_2() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: f#(empty(),l) -> c_2() * Step 4: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Weak TRS: f(cons(x,k),l) -> g(k,l,cons(x,k)) f(empty(),l) -> l g(a,b,c) -> f(a,cons(b,c)) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) g#(a,b,c) -> c_3(f#(a,cons(b,c))) * Step 5: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_3) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(cons) = [7] p(empty) = [1] p(f) = [1] x1 + [1] p(g) = [2] x2 + [2] x3 + [1] p(f#) = [3] x2 + [9] p(g#) = [3] x2 + [1] x3 + [1] p(c_1) = [1] x1 + [0] p(c_2) = [4] p(c_3) = [1] x1 + [0] Following rules are strictly oriented: f#(cons(x,k),l) = [3] l + [9] > [3] l + [8] = c_1(g#(k,l,cons(x,k))) Following rules are (at-least) weakly oriented: g#(a,b,c) = [3] b + [1] c + [1] >= [30] = c_3(f#(a,cons(b,c))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 6: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Weak DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_3) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(cons) = [1] x2 + [4] p(empty) = [1] p(f) = [1] x1 + [1] x2 + [0] p(g) = [1] x1 + [1] x2 + [1] x3 + [0] p(f#) = [4] x1 + [5] p(g#) = [4] x1 + [8] p(c_1) = [1] x1 + [3] p(c_2) = [0] p(c_3) = [1] x1 + [1] Following rules are strictly oriented: g#(a,b,c) = [4] a + [8] > [4] a + [6] = c_3(f#(a,cons(b,c))) Following rules are (at-least) weakly oriented: f#(cons(x,k),l) = [4] k + [21] >= [4] k + [11] = c_1(g#(k,l,cons(x,k))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 7: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))