WORST_CASE(?,O(n^2))
* Step 1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            foldr#3(x8,x12,Nil()) -> x12
            foldr#3(lam1_n(x24),x14,Cons(x32,x6)) -> Cons(Pair(x24,x32),foldr#3(lam1_n(x24),x14,x6))
            foldr#3(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
            main(x2,x1) -> foldr#3(lam2_ms(x2),Nil(),x1)
        - Signature:
            {foldr#3/3,main/2} / {Cons/2,Nil/0,Pair/2,lam1_n/1,lam2_ms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3,main} and constructors {Cons,Nil,Pair,lam1_n
            ,lam2_ms}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          foldr#3#(x8,x12,Nil()) -> c_1()
          foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6))
          foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                        ,foldr#3#(lam2_ms(x3),Nil(),x1))
          main#(x2,x1) -> c_4(foldr#3#(lam2_ms(x2),Nil(),x1))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            foldr#3#(x8,x12,Nil()) -> c_1()
            foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6))
            foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                          ,foldr#3#(lam2_ms(x3),Nil(),x1))
            main#(x2,x1) -> c_4(foldr#3#(lam2_ms(x2),Nil(),x1))
        - Weak TRS:
            foldr#3(x8,x12,Nil()) -> x12
            foldr#3(lam1_n(x24),x14,Cons(x32,x6)) -> Cons(Pair(x24,x32),foldr#3(lam1_n(x24),x14,x6))
            foldr#3(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
            main(x2,x1) -> foldr#3(lam2_ms(x2),Nil(),x1)
        - Signature:
            {foldr#3/3,main/2,foldr#3#/3,main#/2} / {Cons/2,Nil/0,Pair/2,lam1_n/1,lam2_ms/1,c_1/0,c_2/1,c_3/2,c_4/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3#,main#} and constructors {Cons,Nil,Pair,lam1_n
            ,lam2_ms}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {2,3,4}.
        Here rules are labelled as follows:
          1: foldr#3#(x8,x12,Nil()) -> c_1()
          2: foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6))
          3: foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                           ,foldr#3#(lam2_ms(x3),Nil(),x1))
          4: main#(x2,x1) -> c_4(foldr#3#(lam2_ms(x2),Nil(),x1))
* Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6))
            foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                          ,foldr#3#(lam2_ms(x3),Nil(),x1))
            main#(x2,x1) -> c_4(foldr#3#(lam2_ms(x2),Nil(),x1))
        - Weak DPs:
            foldr#3#(x8,x12,Nil()) -> c_1()
        - Weak TRS:
            foldr#3(x8,x12,Nil()) -> x12
            foldr#3(lam1_n(x24),x14,Cons(x32,x6)) -> Cons(Pair(x24,x32),foldr#3(lam1_n(x24),x14,x6))
            foldr#3(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
            main(x2,x1) -> foldr#3(lam2_ms(x2),Nil(),x1)
        - Signature:
            {foldr#3/3,main/2,foldr#3#/3,main#/2} / {Cons/2,Nil/0,Pair/2,lam1_n/1,lam2_ms/1,c_1/0,c_2/1,c_3/2,c_4/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3#,main#} and constructors {Cons,Nil,Pair,lam1_n
            ,lam2_ms}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6))
             -->_1 foldr#3#(x8,x12,Nil()) -> c_1():4
             -->_1 foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6)):1
          
          2:S:foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                            ,foldr#3#(lam2_ms(x3),Nil(),x1))
             -->_2 foldr#3#(x8,x12,Nil()) -> c_1():4
             -->_1 foldr#3#(x8,x12,Nil()) -> c_1():4
             -->_2 foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                                 ,foldr#3#(lam2_ms(x3),Nil(),x1)):2
             -->_1 foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6)):1
          
          3:S:main#(x2,x1) -> c_4(foldr#3#(lam2_ms(x2),Nil(),x1))
             -->_1 foldr#3#(x8,x12,Nil()) -> c_1():4
             -->_1 foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                                 ,foldr#3#(lam2_ms(x3),Nil(),x1)):2
          
          4:W:foldr#3#(x8,x12,Nil()) -> c_1()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: foldr#3#(x8,x12,Nil()) -> c_1()
* Step 4: RemoveHeads WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6))
            foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                          ,foldr#3#(lam2_ms(x3),Nil(),x1))
            main#(x2,x1) -> c_4(foldr#3#(lam2_ms(x2),Nil(),x1))
        - Weak TRS:
            foldr#3(x8,x12,Nil()) -> x12
            foldr#3(lam1_n(x24),x14,Cons(x32,x6)) -> Cons(Pair(x24,x32),foldr#3(lam1_n(x24),x14,x6))
            foldr#3(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
            main(x2,x1) -> foldr#3(lam2_ms(x2),Nil(),x1)
        - Signature:
            {foldr#3/3,main/2,foldr#3#/3,main#/2} / {Cons/2,Nil/0,Pair/2,lam1_n/1,lam2_ms/1,c_1/0,c_2/1,c_3/2,c_4/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3#,main#} and constructors {Cons,Nil,Pair,lam1_n
            ,lam2_ms}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6))
           -->_1 foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6)):1
        
        2:S:foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                          ,foldr#3#(lam2_ms(x3),Nil(),x1))
           -->_2 foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2)
                                                                        ,foldr#3(lam2_ms(x3),Nil(),x1)
                                                                        ,x3)
                                                               ,foldr#3#(lam2_ms(x3),Nil(),x1)):2
           -->_1 foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6)):1
        
        3:S:main#(x2,x1) -> c_4(foldr#3#(lam2_ms(x2),Nil(),x1))
           -->_1 foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2)
                                                                        ,foldr#3(lam2_ms(x3),Nil(),x1)
                                                                        ,x3)
                                                               ,foldr#3#(lam2_ms(x3),Nil(),x1)):2
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(3,main#(x2,x1) -> c_4(foldr#3#(lam2_ms(x2),Nil(),x1)))]
* Step 5: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6))
            foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                          ,foldr#3#(lam2_ms(x3),Nil(),x1))
        - Weak TRS:
            foldr#3(x8,x12,Nil()) -> x12
            foldr#3(lam1_n(x24),x14,Cons(x32,x6)) -> Cons(Pair(x24,x32),foldr#3(lam1_n(x24),x14,x6))
            foldr#3(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
            main(x2,x1) -> foldr#3(lam2_ms(x2),Nil(),x1)
        - Signature:
            {foldr#3/3,main/2,foldr#3#/3,main#/2} / {Cons/2,Nil/0,Pair/2,lam1_n/1,lam2_ms/1,c_1/0,c_2/1,c_3/2,c_4/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3#,main#} and constructors {Cons,Nil,Pair,lam1_n
            ,lam2_ms}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          foldr#3(x8,x12,Nil()) -> x12
          foldr#3(lam1_n(x24),x14,Cons(x32,x6)) -> Cons(Pair(x24,x32),foldr#3(lam1_n(x24),x14,x6))
          foldr#3(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
          foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6))
          foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                        ,foldr#3#(lam2_ms(x3),Nil(),x1))
* Step 6: DecomposeDG WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6))
            foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                          ,foldr#3#(lam2_ms(x3),Nil(),x1))
        - Weak TRS:
            foldr#3(x8,x12,Nil()) -> x12
            foldr#3(lam1_n(x24),x14,Cons(x32,x6)) -> Cons(Pair(x24,x32),foldr#3(lam1_n(x24),x14,x6))
            foldr#3(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
        - Signature:
            {foldr#3/3,main/2,foldr#3#/3,main#/2} / {Cons/2,Nil/0,Pair/2,lam1_n/1,lam2_ms/1,c_1/0,c_2/1,c_3/2,c_4/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3#,main#} and constructors {Cons,Nil,Pair,lam1_n
            ,lam2_ms}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                        ,foldr#3#(lam2_ms(x3),Nil(),x1))
        and a lower component
          foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6))
        Further, following extension rules are added to the lower component.
          foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
          foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3#(lam2_ms(x3),Nil(),x1)
** Step 6.a:1: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                          ,foldr#3#(lam2_ms(x3),Nil(),x1))
        - Weak TRS:
            foldr#3(x8,x12,Nil()) -> x12
            foldr#3(lam1_n(x24),x14,Cons(x32,x6)) -> Cons(Pair(x24,x32),foldr#3(lam1_n(x24),x14,x6))
            foldr#3(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
        - Signature:
            {foldr#3/3,main/2,foldr#3#/3,main#/2} / {Cons/2,Nil/0,Pair/2,lam1_n/1,lam2_ms/1,c_1/0,c_2/1,c_3/2,c_4/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3#,main#} and constructors {Cons,Nil,Pair,lam1_n
            ,lam2_ms}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
                                                            ,foldr#3#(lam2_ms(x3),Nil(),x1))
             -->_2 foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam1_n(x2)
                                                                          ,foldr#3(lam2_ms(x3),Nil(),x1)
                                                                          ,x3)
                                                                 ,foldr#3#(lam2_ms(x3),Nil(),x1)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam2_ms(x3),Nil(),x1))
** Step 6.a:2: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam2_ms(x3),Nil(),x1))
        - Weak TRS:
            foldr#3(x8,x12,Nil()) -> x12
            foldr#3(lam1_n(x24),x14,Cons(x32,x6)) -> Cons(Pair(x24,x32),foldr#3(lam1_n(x24),x14,x6))
            foldr#3(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
        - Signature:
            {foldr#3/3,main/2,foldr#3#/3,main#/2} / {Cons/2,Nil/0,Pair/2,lam1_n/1,lam2_ms/1,c_1/0,c_2/1,c_3/1,c_4/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3#,main#} and constructors {Cons,Nil,Pair,lam1_n
            ,lam2_ms}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam2_ms(x3),Nil(),x1))
** Step 6.a:3: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam2_ms(x3),Nil(),x1))
        - Signature:
            {foldr#3/3,main/2,foldr#3#/3,main#/2} / {Cons/2,Nil/0,Pair/2,lam1_n/1,lam2_ms/1,c_1/0,c_2/1,c_3/1,c_4/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3#,main#} and constructors {Cons,Nil,Pair,lam1_n
            ,lam2_ms}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_3) = {1}
        
        Following symbols are considered usable:
          {foldr#3#,main#}
        TcT has computed the following interpretation:
              p(Cons) = [1] x2 + [8]         
               p(Nil) = [0]                  
              p(Pair) = [1] x1 + [1] x2 + [2]
           p(foldr#3) = [2] x1 + [2] x3 + [1]
            p(lam1_n) = [1]                  
           p(lam2_ms) = [0]                  
              p(main) = [1] x2 + [1]         
          p(foldr#3#) = [1] x1 + [2] x3 + [0]
             p(main#) = [1] x2 + [0]         
               p(c_1) = [0]                  
               p(c_2) = [1] x1 + [1]         
               p(c_3) = [1] x1 + [12]        
               p(c_4) = [1]                  
        
        Following rules are strictly oriented:
        foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) = [2] x1 + [16]                      
                                                > [2] x1 + [12]                      
                                                = c_3(foldr#3#(lam2_ms(x3),Nil(),x1))
        
        
        Following rules are (at-least) weakly oriented:
        
** Step 6.a:4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> c_3(foldr#3#(lam2_ms(x3),Nil(),x1))
        - Signature:
            {foldr#3/3,main/2,foldr#3#/3,main#/2} / {Cons/2,Nil/0,Pair/2,lam1_n/1,lam2_ms/1,c_1/0,c_2/1,c_3/1,c_4/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3#,main#} and constructors {Cons,Nil,Pair,lam1_n
            ,lam2_ms}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

** Step 6.b:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6))
        - Weak DPs:
            foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
            foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3#(lam2_ms(x3),Nil(),x1)
        - Weak TRS:
            foldr#3(x8,x12,Nil()) -> x12
            foldr#3(lam1_n(x24),x14,Cons(x32,x6)) -> Cons(Pair(x24,x32),foldr#3(lam1_n(x24),x14,x6))
            foldr#3(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
        - Signature:
            {foldr#3/3,main/2,foldr#3#/3,main#/2} / {Cons/2,Nil/0,Pair/2,lam1_n/1,lam2_ms/1,c_1/0,c_2/1,c_3/2,c_4/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3#,main#} and constructors {Cons,Nil,Pair,lam1_n
            ,lam2_ms}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1}
        
        Following symbols are considered usable:
          {foldr#3#,main#}
        TcT has computed the following interpretation:
              p(Cons) = [1] x2 + [1]                  
               p(Nil) = [0]                           
              p(Pair) = [4]                           
           p(foldr#3) = [1] x1 + [1] x2 + [8] x3 + [7]
            p(lam1_n) = [0]                           
           p(lam2_ms) = [1] x1 + [2]                  
              p(main) = [1] x1 + [1] x2 + [0]         
          p(foldr#3#) = [8] x1 + [2] x3 + [0]         
             p(main#) = [1]                           
               p(c_1) = [2]                           
               p(c_2) = [1] x1 + [0]                  
               p(c_3) = [1] x1 + [0]                  
               p(c_4) = [1] x1 + [4]                  
        
        Following rules are strictly oriented:
        foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) = [2] x6 + [2]                     
                                               > [2] x6 + [0]                     
                                               = c_2(foldr#3#(lam1_n(x24),x14,x6))
        
        
        Following rules are (at-least) weakly oriented:
        foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) =  [2] x1 + [8] x3 + [18]                               
                                                >= [2] x3 + [0]                                         
                                                =  foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
        
        foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) =  [2] x1 + [8] x3 + [18]                               
                                                >= [2] x1 + [8] x3 + [16]                               
                                                =  foldr#3#(lam2_ms(x3),Nil(),x1)                       
        
** Step 6.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            foldr#3#(lam1_n(x24),x14,Cons(x32,x6)) -> c_2(foldr#3#(lam1_n(x24),x14,x6))
            foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3#(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
            foldr#3#(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3#(lam2_ms(x3),Nil(),x1)
        - Weak TRS:
            foldr#3(x8,x12,Nil()) -> x12
            foldr#3(lam1_n(x24),x14,Cons(x32,x6)) -> Cons(Pair(x24,x32),foldr#3(lam1_n(x24),x14,x6))
            foldr#3(lam2_ms(x3),Nil(),Cons(x2,x1)) -> foldr#3(lam1_n(x2),foldr#3(lam2_ms(x3),Nil(),x1),x3)
        - Signature:
            {foldr#3/3,main/2,foldr#3#/3,main#/2} / {Cons/2,Nil/0,Pair/2,lam1_n/1,lam2_ms/1,c_1/0,c_2/1,c_3/2,c_4/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3#,main#} and constructors {Cons,Nil,Pair,lam1_n
            ,lam2_ms}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^2))