WORST_CASE(?,O(n^2)) * Step 1: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) quot(0(),y) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,quot/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus,quot} and constructors {0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) quot#(0(),y) -> c_3() quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y)),minus#(x,y)) Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) quot#(0(),y) -> c_3() quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y)),minus#(x,y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) quot(0(),y) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3} by application of Pre({1,3}) = {2,4}. Here rules are labelled as follows: 1: minus#(x,0()) -> c_1() 2: minus#(s(x),s(y)) -> c_2(minus#(x,y)) 3: quot#(0(),y) -> c_3() 4: quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y)),minus#(x,y)) * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y)),minus#(x,y)) - Weak DPs: minus#(x,0()) -> c_1() quot#(0(),y) -> c_3() - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) quot(0(),y) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:minus#(s(x),s(y)) -> c_2(minus#(x,y)) -->_1 minus#(x,0()) -> c_1():3 -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 2:S:quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(0(),y) -> c_3():4 -->_2 minus#(x,0()) -> c_1():3 -->_1 quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y)),minus#(x,y)):2 -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 3:W:minus#(x,0()) -> c_1() 4:W:quot#(0(),y) -> c_3() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: quot#(0(),y) -> c_3() 3: minus#(x,0()) -> c_1() * Step 4: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y)),minus#(x,y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) quot(0(),y) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) minus#(s(x),s(y)) -> c_2(minus#(x,y)) quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y)),minus#(x,y)) * Step 5: DecomposeDG WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y)),minus#(x,y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y)),minus#(x,y)) and a lower component minus#(s(x),s(y)) -> c_2(minus#(x,y)) Further, following extension rules are added to the lower component. quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) ** Step 5.a:1: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y)),minus#(x,y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y)),minus#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) ** Step 5.a:2: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(quot#) = {1}, uargs(c_4) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(minus) = [1] x1 + [5] p(quot) = [0] p(s) = [1] x1 + [6] p(minus#) = [0] p(quot#) = [1] x1 + [3] x2 + [1] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [1] x1 + [0] Following rules are strictly oriented: quot#(s(x),s(y)) = [1] x + [3] y + [25] > [1] x + [3] y + [24] = c_4(quot#(minus(x,y),s(y))) Following rules are (at-least) weakly oriented: minus(x,0()) = [1] x + [5] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [11] >= [1] x + [5] = minus(x,y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 5.a:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 5.b:1: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) - Weak DPs: quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(quot#) = {1}, uargs(c_2) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [1] p(minus) = [1] x1 + [0] p(quot) = [1] x1 + [1] x2 + [1] p(s) = [1] x1 + [1] p(minus#) = [1] x1 + [0] p(quot#) = [1] x1 + [1] x2 + [0] p(c_1) = [1] p(c_2) = [1] x1 + [0] p(c_3) = [2] p(c_4) = [1] x2 + [1] Following rules are strictly oriented: minus#(s(x),s(y)) = [1] x + [1] > [1] x + [0] = c_2(minus#(x,y)) Following rules are (at-least) weakly oriented: quot#(s(x),s(y)) = [1] x + [1] y + [2] >= [1] x + [0] = minus#(x,y) quot#(s(x),s(y)) = [1] x + [1] y + [2] >= [1] x + [1] y + [1] = quot#(minus(x,y),s(y)) minus(x,0()) = [1] x + [0] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [1] >= [1] x + [0] = minus(x,y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 5.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))