WORST_CASE(?,O(n^3))
* Step 1: DependencyPairs WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
            minSort(l) -> minSort#1(findMin(l))
            minSort#1(dd(x,xs)) -> dd(x,minSort(xs))
            minSort#1(nil()) -> nil()
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt,#compare,#less,findMin,findMin#1,findMin#2
            ,findMin#3,minSort,minSort#1} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          #cklt#(#EQ()) -> c_1()
          #cklt#(#GT()) -> c_2()
          #cklt#(#LT()) -> c_3()
          #compare#(#0(),#0()) -> c_4()
          #compare#(#0(),#neg(y)) -> c_5()
          #compare#(#0(),#pos(y)) -> c_6()
          #compare#(#0(),#s(y)) -> c_7()
          #compare#(#neg(x),#0()) -> c_8()
          #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
          #compare#(#neg(x),#pos(y)) -> c_10()
          #compare#(#pos(x),#0()) -> c_11()
          #compare#(#pos(x),#neg(y)) -> c_12()
          #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
          #compare#(#s(x),#0()) -> c_14()
          #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
          #less#(x,y) -> c_16(#cklt#(#compare(x,y)),#compare#(x,y))
          findMin#(l) -> c_17(findMin#1#(l))
          findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
          findMin#1#(nil()) -> c_19()
          findMin#2#(dd(y,ys),x) -> c_20(findMin#3#(#less(x,y),x,y,ys),#less#(x,y))
          findMin#2#(nil(),x) -> c_21()
          findMin#3#(#false(),x,y,ys) -> c_22()
          findMin#3#(#true(),x,y,ys) -> c_23()
          minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
          minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
          minSort#1#(nil()) -> c_26()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            #cklt#(#EQ()) -> c_1()
            #cklt#(#GT()) -> c_2()
            #cklt#(#LT()) -> c_3()
            #compare#(#0(),#0()) -> c_4()
            #compare#(#0(),#neg(y)) -> c_5()
            #compare#(#0(),#pos(y)) -> c_6()
            #compare#(#0(),#s(y)) -> c_7()
            #compare#(#neg(x),#0()) -> c_8()
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#neg(x),#pos(y)) -> c_10()
            #compare#(#pos(x),#0()) -> c_11()
            #compare#(#pos(x),#neg(y)) -> c_12()
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #compare#(#s(x),#0()) -> c_14()
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
            #less#(x,y) -> c_16(#cklt#(#compare(x,y)),#compare#(x,y))
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#1#(nil()) -> c_19()
            findMin#2#(dd(y,ys),x) -> c_20(findMin#3#(#less(x,y),x,y,ys),#less#(x,y))
            findMin#2#(nil(),x) -> c_21()
            findMin#3#(#false(),x,y,ys) -> c_22()
            findMin#3#(#true(),x,y,ys) -> c_23()
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
            minSort#1#(nil()) -> c_26()
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
            minSort(l) -> minSort#1(findMin(l))
            minSort#1(dd(x,xs)) -> dd(x,minSort(xs))
            minSort#1(nil()) -> nil()
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/2,c_17/1,c_18/2,c_19/0,c_20/2,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          #cklt(#EQ()) -> #false()
          #cklt(#GT()) -> #false()
          #cklt(#LT()) -> #true()
          #compare(#0(),#0()) -> #EQ()
          #compare(#0(),#neg(y)) -> #GT()
          #compare(#0(),#pos(y)) -> #LT()
          #compare(#0(),#s(y)) -> #LT()
          #compare(#neg(x),#0()) -> #LT()
          #compare(#neg(x),#neg(y)) -> #compare(y,x)
          #compare(#neg(x),#pos(y)) -> #LT()
          #compare(#pos(x),#0()) -> #GT()
          #compare(#pos(x),#neg(y)) -> #GT()
          #compare(#pos(x),#pos(y)) -> #compare(x,y)
          #compare(#s(x),#0()) -> #GT()
          #compare(#s(x),#s(y)) -> #compare(x,y)
          #less(x,y) -> #cklt(#compare(x,y))
          findMin(l) -> findMin#1(l)
          findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
          findMin#1(nil()) -> nil()
          findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
          findMin#2(nil(),x) -> dd(x,nil())
          findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
          findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
          #cklt#(#EQ()) -> c_1()
          #cklt#(#GT()) -> c_2()
          #cklt#(#LT()) -> c_3()
          #compare#(#0(),#0()) -> c_4()
          #compare#(#0(),#neg(y)) -> c_5()
          #compare#(#0(),#pos(y)) -> c_6()
          #compare#(#0(),#s(y)) -> c_7()
          #compare#(#neg(x),#0()) -> c_8()
          #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
          #compare#(#neg(x),#pos(y)) -> c_10()
          #compare#(#pos(x),#0()) -> c_11()
          #compare#(#pos(x),#neg(y)) -> c_12()
          #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
          #compare#(#s(x),#0()) -> c_14()
          #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
          #less#(x,y) -> c_16(#cklt#(#compare(x,y)),#compare#(x,y))
          findMin#(l) -> c_17(findMin#1#(l))
          findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
          findMin#1#(nil()) -> c_19()
          findMin#2#(dd(y,ys),x) -> c_20(findMin#3#(#less(x,y),x,y,ys),#less#(x,y))
          findMin#2#(nil(),x) -> c_21()
          findMin#3#(#false(),x,y,ys) -> c_22()
          findMin#3#(#true(),x,y,ys) -> c_23()
          minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
          minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
          minSort#1#(nil()) -> c_26()
* Step 3: PredecessorEstimation WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            #cklt#(#EQ()) -> c_1()
            #cklt#(#GT()) -> c_2()
            #cklt#(#LT()) -> c_3()
            #compare#(#0(),#0()) -> c_4()
            #compare#(#0(),#neg(y)) -> c_5()
            #compare#(#0(),#pos(y)) -> c_6()
            #compare#(#0(),#s(y)) -> c_7()
            #compare#(#neg(x),#0()) -> c_8()
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#neg(x),#pos(y)) -> c_10()
            #compare#(#pos(x),#0()) -> c_11()
            #compare#(#pos(x),#neg(y)) -> c_12()
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #compare#(#s(x),#0()) -> c_14()
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
            #less#(x,y) -> c_16(#cklt#(#compare(x,y)),#compare#(x,y))
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#1#(nil()) -> c_19()
            findMin#2#(dd(y,ys),x) -> c_20(findMin#3#(#less(x,y),x,y,ys),#less#(x,y))
            findMin#2#(nil(),x) -> c_21()
            findMin#3#(#false(),x,y,ys) -> c_22()
            findMin#3#(#true(),x,y,ys) -> c_23()
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
            minSort#1#(nil()) -> c_26()
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/2,c_17/1,c_18/2,c_19/0,c_20/2,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,3,4,5,6,7,8,10,11,12,14,19,21,22,23,26}
        by application of
          Pre({1,2,3,4,5,6,7,8,10,11,12,14,19,21,22,23,26}) = {9,13,15,16,17,18,20,24}.
        Here rules are labelled as follows:
          1: #cklt#(#EQ()) -> c_1()
          2: #cklt#(#GT()) -> c_2()
          3: #cklt#(#LT()) -> c_3()
          4: #compare#(#0(),#0()) -> c_4()
          5: #compare#(#0(),#neg(y)) -> c_5()
          6: #compare#(#0(),#pos(y)) -> c_6()
          7: #compare#(#0(),#s(y)) -> c_7()
          8: #compare#(#neg(x),#0()) -> c_8()
          9: #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
          10: #compare#(#neg(x),#pos(y)) -> c_10()
          11: #compare#(#pos(x),#0()) -> c_11()
          12: #compare#(#pos(x),#neg(y)) -> c_12()
          13: #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
          14: #compare#(#s(x),#0()) -> c_14()
          15: #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
          16: #less#(x,y) -> c_16(#cklt#(#compare(x,y)),#compare#(x,y))
          17: findMin#(l) -> c_17(findMin#1#(l))
          18: findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
          19: findMin#1#(nil()) -> c_19()
          20: findMin#2#(dd(y,ys),x) -> c_20(findMin#3#(#less(x,y),x,y,ys),#less#(x,y))
          21: findMin#2#(nil(),x) -> c_21()
          22: findMin#3#(#false(),x,y,ys) -> c_22()
          23: findMin#3#(#true(),x,y,ys) -> c_23()
          24: minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
          25: minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
          26: minSort#1#(nil()) -> c_26()
* Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
            #less#(x,y) -> c_16(#cklt#(#compare(x,y)),#compare#(x,y))
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#2#(dd(y,ys),x) -> c_20(findMin#3#(#less(x,y),x,y,ys),#less#(x,y))
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak DPs:
            #cklt#(#EQ()) -> c_1()
            #cklt#(#GT()) -> c_2()
            #cklt#(#LT()) -> c_3()
            #compare#(#0(),#0()) -> c_4()
            #compare#(#0(),#neg(y)) -> c_5()
            #compare#(#0(),#pos(y)) -> c_6()
            #compare#(#0(),#s(y)) -> c_7()
            #compare#(#neg(x),#0()) -> c_8()
            #compare#(#neg(x),#pos(y)) -> c_10()
            #compare#(#pos(x),#0()) -> c_11()
            #compare#(#pos(x),#neg(y)) -> c_12()
            #compare#(#s(x),#0()) -> c_14()
            findMin#1#(nil()) -> c_19()
            findMin#2#(nil(),x) -> c_21()
            findMin#3#(#false(),x,y,ys) -> c_22()
            findMin#3#(#true(),x,y,ys) -> c_23()
            minSort#1#(nil()) -> c_26()
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/2,c_17/1,c_18/2,c_19/0,c_20/2,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:#compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
             -->_1 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):3
             -->_1 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):2
             -->_1 #compare#(#s(x),#0()) -> c_14():21
             -->_1 #compare#(#pos(x),#neg(y)) -> c_12():20
             -->_1 #compare#(#pos(x),#0()) -> c_11():19
             -->_1 #compare#(#neg(x),#pos(y)) -> c_10():18
             -->_1 #compare#(#neg(x),#0()) -> c_8():17
             -->_1 #compare#(#0(),#s(y)) -> c_7():16
             -->_1 #compare#(#0(),#pos(y)) -> c_6():15
             -->_1 #compare#(#0(),#neg(y)) -> c_5():14
             -->_1 #compare#(#0(),#0()) -> c_4():13
             -->_1 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):1
          
          2:S:#compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
             -->_1 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):3
             -->_1 #compare#(#s(x),#0()) -> c_14():21
             -->_1 #compare#(#pos(x),#neg(y)) -> c_12():20
             -->_1 #compare#(#pos(x),#0()) -> c_11():19
             -->_1 #compare#(#neg(x),#pos(y)) -> c_10():18
             -->_1 #compare#(#neg(x),#0()) -> c_8():17
             -->_1 #compare#(#0(),#s(y)) -> c_7():16
             -->_1 #compare#(#0(),#pos(y)) -> c_6():15
             -->_1 #compare#(#0(),#neg(y)) -> c_5():14
             -->_1 #compare#(#0(),#0()) -> c_4():13
             -->_1 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):2
             -->_1 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):1
          
          3:S:#compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
             -->_1 #compare#(#s(x),#0()) -> c_14():21
             -->_1 #compare#(#pos(x),#neg(y)) -> c_12():20
             -->_1 #compare#(#pos(x),#0()) -> c_11():19
             -->_1 #compare#(#neg(x),#pos(y)) -> c_10():18
             -->_1 #compare#(#neg(x),#0()) -> c_8():17
             -->_1 #compare#(#0(),#s(y)) -> c_7():16
             -->_1 #compare#(#0(),#pos(y)) -> c_6():15
             -->_1 #compare#(#0(),#neg(y)) -> c_5():14
             -->_1 #compare#(#0(),#0()) -> c_4():13
             -->_1 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):3
             -->_1 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):2
             -->_1 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):1
          
          4:S:#less#(x,y) -> c_16(#cklt#(#compare(x,y)),#compare#(x,y))
             -->_2 #compare#(#s(x),#0()) -> c_14():21
             -->_2 #compare#(#pos(x),#neg(y)) -> c_12():20
             -->_2 #compare#(#pos(x),#0()) -> c_11():19
             -->_2 #compare#(#neg(x),#pos(y)) -> c_10():18
             -->_2 #compare#(#neg(x),#0()) -> c_8():17
             -->_2 #compare#(#0(),#s(y)) -> c_7():16
             -->_2 #compare#(#0(),#pos(y)) -> c_6():15
             -->_2 #compare#(#0(),#neg(y)) -> c_5():14
             -->_2 #compare#(#0(),#0()) -> c_4():13
             -->_1 #cklt#(#LT()) -> c_3():12
             -->_1 #cklt#(#GT()) -> c_2():11
             -->_1 #cklt#(#EQ()) -> c_1():10
             -->_2 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):3
             -->_2 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):2
             -->_2 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):1
          
          5:S:findMin#(l) -> c_17(findMin#1#(l))
             -->_1 findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs)):6
             -->_1 findMin#1#(nil()) -> c_19():22
          
          6:S:findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
             -->_1 findMin#2#(dd(y,ys),x) -> c_20(findMin#3#(#less(x,y),x,y,ys),#less#(x,y)):7
             -->_1 findMin#2#(nil(),x) -> c_21():23
             -->_2 findMin#(l) -> c_17(findMin#1#(l)):5
          
          7:S:findMin#2#(dd(y,ys),x) -> c_20(findMin#3#(#less(x,y),x,y,ys),#less#(x,y))
             -->_1 findMin#3#(#true(),x,y,ys) -> c_23():25
             -->_1 findMin#3#(#false(),x,y,ys) -> c_22():24
             -->_2 #less#(x,y) -> c_16(#cklt#(#compare(x,y)),#compare#(x,y)):4
          
          8:S:minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
             -->_1 minSort#1#(dd(x,xs)) -> c_25(minSort#(xs)):9
             -->_1 minSort#1#(nil()) -> c_26():26
             -->_2 findMin#(l) -> c_17(findMin#1#(l)):5
          
          9:S:minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
             -->_1 minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l)):8
          
          10:W:#cklt#(#EQ()) -> c_1()
             
          
          11:W:#cklt#(#GT()) -> c_2()
             
          
          12:W:#cklt#(#LT()) -> c_3()
             
          
          13:W:#compare#(#0(),#0()) -> c_4()
             
          
          14:W:#compare#(#0(),#neg(y)) -> c_5()
             
          
          15:W:#compare#(#0(),#pos(y)) -> c_6()
             
          
          16:W:#compare#(#0(),#s(y)) -> c_7()
             
          
          17:W:#compare#(#neg(x),#0()) -> c_8()
             
          
          18:W:#compare#(#neg(x),#pos(y)) -> c_10()
             
          
          19:W:#compare#(#pos(x),#0()) -> c_11()
             
          
          20:W:#compare#(#pos(x),#neg(y)) -> c_12()
             
          
          21:W:#compare#(#s(x),#0()) -> c_14()
             
          
          22:W:findMin#1#(nil()) -> c_19()
             
          
          23:W:findMin#2#(nil(),x) -> c_21()
             
          
          24:W:findMin#3#(#false(),x,y,ys) -> c_22()
             
          
          25:W:findMin#3#(#true(),x,y,ys) -> c_23()
             
          
          26:W:minSort#1#(nil()) -> c_26()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          26: minSort#1#(nil()) -> c_26()
          22: findMin#1#(nil()) -> c_19()
          23: findMin#2#(nil(),x) -> c_21()
          24: findMin#3#(#false(),x,y,ys) -> c_22()
          25: findMin#3#(#true(),x,y,ys) -> c_23()
          10: #cklt#(#EQ()) -> c_1()
          11: #cklt#(#GT()) -> c_2()
          12: #cklt#(#LT()) -> c_3()
          13: #compare#(#0(),#0()) -> c_4()
          14: #compare#(#0(),#neg(y)) -> c_5()
          15: #compare#(#0(),#pos(y)) -> c_6()
          16: #compare#(#0(),#s(y)) -> c_7()
          17: #compare#(#neg(x),#0()) -> c_8()
          18: #compare#(#neg(x),#pos(y)) -> c_10()
          19: #compare#(#pos(x),#0()) -> c_11()
          20: #compare#(#pos(x),#neg(y)) -> c_12()
          21: #compare#(#s(x),#0()) -> c_14()
* Step 5: SimplifyRHS WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
            #less#(x,y) -> c_16(#cklt#(#compare(x,y)),#compare#(x,y))
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#2#(dd(y,ys),x) -> c_20(findMin#3#(#less(x,y),x,y,ys),#less#(x,y))
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/2,c_17/1,c_18/2,c_19/0,c_20/2,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:#compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
             -->_1 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):3
             -->_1 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):2
             -->_1 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):1
          
          2:S:#compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
             -->_1 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):3
             -->_1 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):2
             -->_1 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):1
          
          3:S:#compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
             -->_1 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):3
             -->_1 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):2
             -->_1 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):1
          
          4:S:#less#(x,y) -> c_16(#cklt#(#compare(x,y)),#compare#(x,y))
             -->_2 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):3
             -->_2 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):2
             -->_2 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):1
          
          5:S:findMin#(l) -> c_17(findMin#1#(l))
             -->_1 findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs)):6
          
          6:S:findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
             -->_1 findMin#2#(dd(y,ys),x) -> c_20(findMin#3#(#less(x,y),x,y,ys),#less#(x,y)):7
             -->_2 findMin#(l) -> c_17(findMin#1#(l)):5
          
          7:S:findMin#2#(dd(y,ys),x) -> c_20(findMin#3#(#less(x,y),x,y,ys),#less#(x,y))
             -->_2 #less#(x,y) -> c_16(#cklt#(#compare(x,y)),#compare#(x,y)):4
          
          8:S:minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
             -->_1 minSort#1#(dd(x,xs)) -> c_25(minSort#(xs)):9
             -->_2 findMin#(l) -> c_17(findMin#1#(l)):5
          
          9:S:minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
             -->_1 minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l)):8
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          #less#(x,y) -> c_16(#compare#(x,y))
          findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
* Step 6: Decompose WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
            #less#(x,y) -> c_16(#compare#(x,y))
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
              #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
              #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
          - Weak DPs:
              #less#(x,y) -> c_16(#compare#(x,y))
              findMin#(l) -> c_17(findMin#1#(l))
              findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
              findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
              minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
              minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
          - Weak TRS:
              #cklt(#EQ()) -> #false()
              #cklt(#GT()) -> #false()
              #cklt(#LT()) -> #true()
              #compare(#0(),#0()) -> #EQ()
              #compare(#0(),#neg(y)) -> #GT()
              #compare(#0(),#pos(y)) -> #LT()
              #compare(#0(),#s(y)) -> #LT()
              #compare(#neg(x),#0()) -> #LT()
              #compare(#neg(x),#neg(y)) -> #compare(y,x)
              #compare(#neg(x),#pos(y)) -> #LT()
              #compare(#pos(x),#0()) -> #GT()
              #compare(#pos(x),#neg(y)) -> #GT()
              #compare(#pos(x),#pos(y)) -> #compare(x,y)
              #compare(#s(x),#0()) -> #GT()
              #compare(#s(x),#s(y)) -> #compare(x,y)
              #less(x,y) -> #cklt(#compare(x,y))
              findMin(l) -> findMin#1(l)
              findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
              findMin#1(nil()) -> nil()
              findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
              findMin#2(nil(),x) -> dd(x,nil())
              findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
              findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
          - Signature:
              {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
              ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
              ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0
              ,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0
              ,c_22/0,c_23/0,c_24/2,c_25/1,c_26/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
              ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
        
        Problem (S)
          - Strict DPs:
              #less#(x,y) -> c_16(#compare#(x,y))
              findMin#(l) -> c_17(findMin#1#(l))
              findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
              findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
              minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
              minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
          - Weak DPs:
              #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
              #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
              #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
          - Weak TRS:
              #cklt(#EQ()) -> #false()
              #cklt(#GT()) -> #false()
              #cklt(#LT()) -> #true()
              #compare(#0(),#0()) -> #EQ()
              #compare(#0(),#neg(y)) -> #GT()
              #compare(#0(),#pos(y)) -> #LT()
              #compare(#0(),#s(y)) -> #LT()
              #compare(#neg(x),#0()) -> #LT()
              #compare(#neg(x),#neg(y)) -> #compare(y,x)
              #compare(#neg(x),#pos(y)) -> #LT()
              #compare(#pos(x),#0()) -> #GT()
              #compare(#pos(x),#neg(y)) -> #GT()
              #compare(#pos(x),#pos(y)) -> #compare(x,y)
              #compare(#s(x),#0()) -> #GT()
              #compare(#s(x),#s(y)) -> #compare(x,y)
              #less(x,y) -> #cklt(#compare(x,y))
              findMin(l) -> findMin#1(l)
              findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
              findMin#1(nil()) -> nil()
              findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
              findMin#2(nil(),x) -> dd(x,nil())
              findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
              findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
          - Signature:
              {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
              ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
              ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0
              ,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0
              ,c_22/0,c_23/0,c_24/2,c_25/1,c_26/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
              ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
** Step 6.a:1: DecomposeDG WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
        - Weak DPs:
            #less#(x,y) -> c_16(#compare#(x,y))
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
          minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        and a lower component
          #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
          #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
          #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
          #less#(x,y) -> c_16(#compare#(x,y))
          findMin#(l) -> c_17(findMin#1#(l))
          findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
          findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
        Further, following extension rules are added to the lower component.
          minSort#(l) -> findMin#(l)
          minSort#(l) -> minSort#1#(findMin(l))
          minSort#1#(dd(x,xs)) -> minSort#(xs)
*** Step 6.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
        - Weak DPs:
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
          
        Consider the set of all dependency pairs
          1: minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
          2: minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,2}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
**** Step 6.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
        - Weak DPs:
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_24) = {1},
          uargs(c_25) = {1}
        
        Following symbols are considered usable:
          {#cklt,#less,findMin,findMin#1,findMin#2,findMin#3,#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
          ,findMin#3#,minSort#,minSort#1#}
        TcT has computed the following interpretation:
                  p(#0) = [2]                  
                 p(#EQ) = [0]                  
                 p(#GT) = [8]                  
                 p(#LT) = [4]                  
               p(#cklt) = [1]                  
            p(#compare) = [8] x1 + [4] x2 + [5]
              p(#false) = [1]                  
               p(#less) = [1]                  
                p(#neg) = [0]                  
                p(#pos) = [1] x1 + [2]         
                  p(#s) = [1] x1 + [0]         
               p(#true) = [1]                  
                  p(dd) = [1] x2 + [8]         
             p(findMin) = [1] x1 + [0]         
           p(findMin#1) = [1] x1 + [0]         
           p(findMin#2) = [1] x1 + [8]         
           p(findMin#3) = [8] x1 + [1] x4 + [8]
             p(minSort) = [2] x1 + [0]         
           p(minSort#1) = [1] x1 + [1]         
                 p(nil) = [0]                  
              p(#cklt#) = [1]                  
           p(#compare#) = [8] x1 + [1] x2 + [1]
              p(#less#) = [1] x1 + [0]         
            p(findMin#) = [1] x1 + [0]         
          p(findMin#1#) = [1] x1 + [1]         
          p(findMin#2#) = [1] x1 + [8] x2 + [1]
          p(findMin#3#) = [2] x1 + [4] x4 + [0]
            p(minSort#) = [2] x1 + [2]         
          p(minSort#1#) = [2] x1 + [0]         
                 p(c_1) = [1]                  
                 p(c_2) = [2]                  
                 p(c_3) = [1]                  
                 p(c_4) = [0]                  
                 p(c_5) = [1]                  
                 p(c_6) = [1]                  
                 p(c_7) = [8]                  
                 p(c_8) = [1]                  
                 p(c_9) = [8]                  
                p(c_10) = [0]                  
                p(c_11) = [1]                  
                p(c_12) = [8]                  
                p(c_13) = [2]                  
                p(c_14) = [0]                  
                p(c_15) = [1] x1 + [2]         
                p(c_16) = [1] x1 + [1]         
                p(c_17) = [1]                  
                p(c_18) = [1] x2 + [0]         
                p(c_19) = [1]                  
                p(c_20) = [1] x1 + [0]         
                p(c_21) = [1]                  
                p(c_22) = [1]                  
                p(c_23) = [1]                  
                p(c_24) = [1] x1 + [0]         
                p(c_25) = [1] x1 + [14]        
                p(c_26) = [1]                  
        
        Following rules are strictly oriented:
        minSort#(l) = [2] l + [2]                             
                    > [2] l + [0]                             
                    = c_24(minSort#1#(findMin(l)),findMin#(l))
        
        
        Following rules are (at-least) weakly oriented:
              minSort#1#(dd(x,xs)) =  [2] xs + [16]               
                                   >= [2] xs + [16]               
                                   =  c_25(minSort#(xs))          
        
                      #cklt(#EQ()) =  [1]                         
                                   >= [1]                         
                                   =  #false()                    
        
                      #cklt(#GT()) =  [1]                         
                                   >= [1]                         
                                   =  #false()                    
        
                      #cklt(#LT()) =  [1]                         
                                   >= [1]                         
                                   =  #true()                     
        
                        #less(x,y) =  [1]                         
                                   >= [1]                         
                                   =  #cklt(#compare(x,y))        
        
                        findMin(l) =  [1] l + [0]                 
                                   >= [1] l + [0]                 
                                   =  findMin#1(l)                
        
               findMin#1(dd(x,xs)) =  [1] xs + [8]                
                                   >= [1] xs + [8]                
                                   =  findMin#2(findMin(xs),x)    
        
                  findMin#1(nil()) =  [0]                         
                                   >= [0]                         
                                   =  nil()                       
        
             findMin#2(dd(y,ys),x) =  [1] ys + [16]               
                                   >= [1] ys + [16]               
                                   =  findMin#3(#less(x,y),x,y,ys)
        
                findMin#2(nil(),x) =  [8]                         
                                   >= [8]                         
                                   =  dd(x,nil())                 
        
        findMin#3(#false(),x,y,ys) =  [1] ys + [16]               
                                   >= [1] ys + [16]               
                                   =  dd(y,dd(x,ys))              
        
         findMin#3(#true(),x,y,ys) =  [1] ys + [16]               
                                   >= [1] ys + [16]               
                                   =  dd(x,dd(y,ys))              
        
**** Step 6.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 6.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
             -->_1 minSort#1#(dd(x,xs)) -> c_25(minSort#(xs)):2
          
          2:W:minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
             -->_1 minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
          2: minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
**** Step 6.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 6.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
        - Weak DPs:
            #less#(x,y) -> c_16(#compare#(x,y))
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
            minSort#(l) -> findMin#(l)
            minSort#(l) -> minSort#1#(findMin(l))
            minSort#1#(dd(x,xs)) -> minSort#(xs)
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
          2: #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
          
        The strictly oriented rules are moved into the weak component.
**** Step 6.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
        - Weak DPs:
            #less#(x,y) -> c_16(#compare#(x,y))
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
            minSort#(l) -> findMin#(l)
            minSort#(l) -> minSort#1#(findMin(l))
            minSort#1#(dd(x,xs)) -> minSort#(xs)
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_9) = {1},
          uargs(c_13) = {1},
          uargs(c_15) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_18) = {1,2},
          uargs(c_20) = {1}
        
        Following symbols are considered usable:
          {findMin,findMin#1,findMin#2,findMin#3,#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#,findMin#3#
          ,minSort#,minSort#1#}
        TcT has computed the following interpretation:
                  p(#0) = [1]                                 
                          [0]                                 
                 p(#EQ) = [0]                                 
                          [0]                                 
                 p(#GT) = [2]                                 
                          [0]                                 
                 p(#LT) = [0]                                 
                          [2]                                 
               p(#cklt) = [1]                                 
                          [0]                                 
            p(#compare) = [1 3] x1 + [0 2] x2 + [0]           
                          [2 0]      [0 0]      [0]           
              p(#false) = [0]                                 
                          [0]                                 
               p(#less) = [2 0] x1 + [0 0] x2 + [0]           
                          [1 2]      [2 1]      [0]           
                p(#neg) = [0 0] x1 + [1]                      
                          [0 1]      [1]                      
                p(#pos) = [0 2] x1 + [1]                      
                          [0 1]      [1]                      
                  p(#s) = [0 2] x1 + [0]                      
                          [0 1]      [0]                      
               p(#true) = [0]                                 
                          [0]                                 
                  p(dd) = [0 0] x1 + [1 1] x2 + [0]           
                          [0 1]      [0 1]      [0]           
             p(findMin) = [1 1] x1 + [0]                      
                          [0 1]      [0]                      
           p(findMin#1) = [1 1] x1 + [0]                      
                          [0 1]      [0]                      
           p(findMin#2) = [1 1] x1 + [0 1] x2 + [0]           
                          [0 1]      [0 1]      [0]           
           p(findMin#3) = [0 1] x2 + [0 1] x3 + [1 2] x4 + [0]
                          [0 1]      [0 1]      [0 1]      [0]
             p(minSort) = [0 0] x1 + [0]                      
                          [0 1]      [0]                      
           p(minSort#1) = [1]                                 
                          [2]                                 
                 p(nil) = [0]                                 
                          [0]                                 
              p(#cklt#) = [2 1] x1 + [0]                      
                          [2 2]      [0]                      
           p(#compare#) = [0 1] x1 + [0 1] x2 + [0]           
                          [0 0]      [0 1]      [0]           
              p(#less#) = [0 1] x1 + [0 1] x2 + [0]           
                          [2 2]      [0 0]      [0]           
            p(findMin#) = [1 2] x1 + [0]                      
                          [0 0]      [0]                      
          p(findMin#1#) = [1 2] x1 + [0]                      
                          [1 0]      [2]                      
          p(findMin#2#) = [0 1] x1 + [0 1] x2 + [0]           
                          [0 0]      [3 2]      [0]           
          p(findMin#3#) = [2]                                 
                          [2]                                 
            p(minSort#) = [1 2] x1 + [0]                      
                          [0 0]      [0]                      
          p(minSort#1#) = [1 1] x1 + [0]                      
                          [0 0]      [0]                      
                 p(c_1) = [1]                                 
                          [0]                                 
                 p(c_2) = [0]                                 
                          [0]                                 
                 p(c_3) = [0]                                 
                          [2]                                 
                 p(c_4) = [1]                                 
                          [0]                                 
                 p(c_5) = [1]                                 
                          [0]                                 
                 p(c_6) = [1]                                 
                          [0]                                 
                 p(c_7) = [2]                                 
                          [0]                                 
                 p(c_8) = [1]                                 
                          [0]                                 
                 p(c_9) = [1 0] x1 + [1]                      
                          [0 0]      [0]                      
                p(c_10) = [0]                                 
                          [0]                                 
                p(c_11) = [1]                                 
                          [0]                                 
                p(c_12) = [0]                                 
                          [1]                                 
                p(c_13) = [1 0] x1 + [1]                      
                          [0 0]      [0]                      
                p(c_14) = [2]                                 
                          [1]                                 
                p(c_15) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_16) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_17) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_18) = [1 0] x1 + [1 1] x2 + [0]           
                          [0 0]      [0 0]      [1]           
                p(c_19) = [1]                                 
                          [2]                                 
                p(c_20) = [1 0] x1 + [0]                      
                          [0 1]      [0]                      
                p(c_21) = [0]                                 
                          [0]                                 
                p(c_22) = [0]                                 
                          [1]                                 
                p(c_23) = [1]                                 
                          [2]                                 
                p(c_24) = [0 1] x1 + [1]                      
                          [0 1]      [2]                      
                p(c_25) = [0]                                 
                          [0]                                 
                p(c_26) = [2]                                 
                          [0]                                 
        
        Following rules are strictly oriented:
        #compare#(#neg(x),#neg(y)) = [0 1] x + [0 1] y + [2]
                                     [0 0]     [0 1]     [1]
                                   > [0 1] x + [0 1] y + [1]
                                     [0 0]     [0 0]     [0]
                                   = c_9(#compare#(y,x))    
        
        #compare#(#pos(x),#pos(y)) = [0 1] x + [0 1] y + [2]
                                     [0 0]     [0 1]     [1]
                                   > [0 1] x + [0 1] y + [1]
                                     [0 0]     [0 0]     [0]
                                   = c_13(#compare#(x,y))   
        
        
        Following rules are (at-least) weakly oriented:
            #compare#(#s(x),#s(y)) =  [0 1] x + [0 1] y + [0]                     
                                      [0 0]     [0 1]     [0]                     
                                   >= [0 1] x + [0 1] y + [0]                     
                                      [0 0]     [0 0]     [0]                     
                                   =  c_15(#compare#(x,y))                        
        
                       #less#(x,y) =  [0 1] x + [0 1] y + [0]                     
                                      [2 2]     [0 0]     [0]                     
                                   >= [0 1] x + [0 1] y + [0]                     
                                      [0 0]     [0 0]     [0]                     
                                   =  c_16(#compare#(x,y))                        
        
                       findMin#(l) =  [1 2] l + [0]                               
                                      [0 0]     [0]                               
                                   >= [1 2] l + [0]                               
                                      [0 0]     [0]                               
                                   =  c_17(findMin#1#(l))                         
        
              findMin#1#(dd(x,xs)) =  [0 2] x + [1 3] xs + [0]                    
                                      [0 0]     [1 1]      [2]                    
                                   >= [0 1] x + [1 3] xs + [0]                    
                                      [0 0]     [0 0]      [1]                    
                                   =  c_18(findMin#2#(findMin(xs),x),findMin#(xs))
        
            findMin#2#(dd(y,ys),x) =  [0 1] x + [0 1] y + [0 1] ys + [0]          
                                      [3 2]     [0 0]     [0 0]      [0]          
                                   >= [0 1] x + [0 1] y + [0]                     
                                      [2 2]     [0 0]     [0]                     
                                   =  c_20(#less#(x,y))                           
        
                       minSort#(l) =  [1 2] l + [0]                               
                                      [0 0]     [0]                               
                                   >= [1 2] l + [0]                               
                                      [0 0]     [0]                               
                                   =  findMin#(l)                                 
        
                       minSort#(l) =  [1 2] l + [0]                               
                                      [0 0]     [0]                               
                                   >= [1 2] l + [0]                               
                                      [0 0]     [0]                               
                                   =  minSort#1#(findMin(l))                      
        
              minSort#1#(dd(x,xs)) =  [0 1] x + [1 2] xs + [0]                    
                                      [0 0]     [0 0]      [0]                    
                                   >= [1 2] xs + [0]                              
                                      [0 0]      [0]                              
                                   =  minSort#(xs)                                
        
                        findMin(l) =  [1 1] l + [0]                               
                                      [0 1]     [0]                               
                                   >= [1 1] l + [0]                               
                                      [0 1]     [0]                               
                                   =  findMin#1(l)                                
        
               findMin#1(dd(x,xs)) =  [0 1] x + [1 2] xs + [0]                    
                                      [0 1]     [0 1]      [0]                    
                                   >= [0 1] x + [1 2] xs + [0]                    
                                      [0 1]     [0 1]      [0]                    
                                   =  findMin#2(findMin(xs),x)                    
        
                  findMin#1(nil()) =  [0]                                         
                                      [0]                                         
                                   >= [0]                                         
                                      [0]                                         
                                   =  nil()                                       
        
             findMin#2(dd(y,ys),x) =  [0 1] x + [0 1] y + [1 2] ys + [0]          
                                      [0 1]     [0 1]     [0 1]      [0]          
                                   >= [0 1] x + [0 1] y + [1 2] ys + [0]          
                                      [0 1]     [0 1]     [0 1]      [0]          
                                   =  findMin#3(#less(x,y),x,y,ys)                
        
                findMin#2(nil(),x) =  [0 1] x + [0]                               
                                      [0 1]     [0]                               
                                   >= [0 0] x + [0]                               
                                      [0 1]     [0]                               
                                   =  dd(x,nil())                                 
        
        findMin#3(#false(),x,y,ys) =  [0 1] x + [0 1] y + [1 2] ys + [0]          
                                      [0 1]     [0 1]     [0 1]      [0]          
                                   >= [0 1] x + [0 0] y + [1 2] ys + [0]          
                                      [0 1]     [0 1]     [0 1]      [0]          
                                   =  dd(y,dd(x,ys))                              
        
         findMin#3(#true(),x,y,ys) =  [0 1] x + [0 1] y + [1 2] ys + [0]          
                                      [0 1]     [0 1]     [0 1]      [0]          
                                   >= [0 0] x + [0 1] y + [1 2] ys + [0]          
                                      [0 1]     [0 1]     [0 1]      [0]          
                                   =  dd(x,dd(y,ys))                              
        
**** Step 6.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
        - Weak DPs:
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #less#(x,y) -> c_16(#compare#(x,y))
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
            minSort#(l) -> findMin#(l)
            minSort#(l) -> minSort#1#(findMin(l))
            minSort#1#(dd(x,xs)) -> minSort#(xs)
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 6.a:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
        - Weak DPs:
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #less#(x,y) -> c_16(#compare#(x,y))
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
            minSort#(l) -> findMin#(l)
            minSort#(l) -> minSort#1#(findMin(l))
            minSort#1#(dd(x,xs)) -> minSort#(xs)
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
          
        The strictly oriented rules are moved into the weak component.
***** Step 6.a:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
        - Weak DPs:
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #less#(x,y) -> c_16(#compare#(x,y))
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
            minSort#(l) -> findMin#(l)
            minSort#(l) -> minSort#1#(findMin(l))
            minSort#1#(dd(x,xs)) -> minSort#(xs)
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_9) = {1},
          uargs(c_13) = {1},
          uargs(c_15) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_18) = {1,2},
          uargs(c_20) = {1}
        
        Following symbols are considered usable:
          {findMin,findMin#1,findMin#2,findMin#3,#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#,findMin#3#
          ,minSort#,minSort#1#}
        TcT has computed the following interpretation:
                  p(#0) = [0]                                 
                          [0]                                 
                 p(#EQ) = [0]                                 
                          [1]                                 
                 p(#GT) = [0]                                 
                          [3]                                 
                 p(#LT) = [0]                                 
                          [1]                                 
               p(#cklt) = [0 0] x1 + [0]                      
                          [0 1]      [3]                      
            p(#compare) = [0 0] x1 + [0 0] x2 + [0]           
                          [1 1]      [0 1]      [0]           
              p(#false) = [1]                                 
                          [0]                                 
               p(#less) = [1 0] x1 + [2 2] x2 + [0]           
                          [2 0]      [0 0]      [0]           
                p(#neg) = [0 0] x1 + [0]                      
                          [0 1]      [0]                      
                p(#pos) = [0 2] x1 + [0]                      
                          [0 1]      [2]                      
                  p(#s) = [0 1] x1 + [3]                      
                          [0 1]      [1]                      
               p(#true) = [0]                                 
                          [0]                                 
                  p(dd) = [0 0] x1 + [1 1] x2 + [0]           
                          [0 1]      [0 1]      [0]           
             p(findMin) = [1 1] x1 + [0]                      
                          [0 1]      [0]                      
           p(findMin#1) = [1 1] x1 + [0]                      
                          [0 1]      [0]                      
           p(findMin#2) = [1 1] x1 + [0 1] x2 + [0]           
                          [0 1]      [0 1]      [0]           
           p(findMin#3) = [0 1] x2 + [0 1] x3 + [1 2] x4 + [0]
                          [0 1]      [0 1]      [0 1]      [0]
             p(minSort) = [0 0] x1 + [0]                      
                          [1 0]      [0]                      
           p(minSort#1) = [2]                                 
                          [1]                                 
                 p(nil) = [0]                                 
                          [0]                                 
              p(#cklt#) = [0 1] x1 + [2]                      
                          [1 0]      [2]                      
           p(#compare#) = [0 1] x1 + [0 1] x2 + [0]           
                          [0 2]      [0 0]      [1]           
              p(#less#) = [0 1] x1 + [0 1] x2 + [0]           
                          [0 1]      [0 0]      [0]           
            p(findMin#) = [1 2] x1 + [0]                      
                          [0 0]      [0]                      
          p(findMin#1#) = [1 2] x1 + [0]                      
                          [2 3]      [2]                      
          p(findMin#2#) = [0 1] x1 + [0 2] x2 + [0]           
                          [2 0]      [0 2]      [0]           
          p(findMin#3#) = [0 0] x1 + [1 0] x2 + [0 2] x4 + [0]
                          [0 2]      [0 1]      [2 0]      [2]
            p(minSort#) = [2 2] x1 + [0]                      
                          [0 0]      [0]                      
          p(minSort#1#) = [2 0] x1 + [0]                      
                          [0 0]      [0]                      
                 p(c_1) = [2]                                 
                          [0]                                 
                 p(c_2) = [0]                                 
                          [0]                                 
                 p(c_3) = [0]                                 
                          [0]                                 
                 p(c_4) = [0]                                 
                          [1]                                 
                 p(c_5) = [1]                                 
                          [0]                                 
                 p(c_6) = [2]                                 
                          [0]                                 
                 p(c_7) = [0]                                 
                          [1]                                 
                 p(c_8) = [1]                                 
                          [2]                                 
                 p(c_9) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_10) = [0]                                 
                          [0]                                 
                p(c_11) = [1]                                 
                          [1]                                 
                p(c_12) = [2]                                 
                          [0]                                 
                p(c_13) = [1 0] x1 + [2]                      
                          [0 1]      [1]                      
                p(c_14) = [0]                                 
                          [0]                                 
                p(c_15) = [1 0] x1 + [1]                      
                          [0 0]      [1]                      
                p(c_16) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_17) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_18) = [1 0] x1 + [1 0] x2 + [0]           
                          [1 0]      [2 0]      [1]           
                p(c_19) = [0]                                 
                          [0]                                 
                p(c_20) = [1 1] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_21) = [1]                                 
                          [1]                                 
                p(c_22) = [1]                                 
                          [0]                                 
                p(c_23) = [0]                                 
                          [1]                                 
                p(c_24) = [0 0] x2 + [0]                      
                          [0 1]      [1]                      
                p(c_25) = [1]                                 
                          [0]                                 
                p(c_26) = [1]                                 
                          [0]                                 
        
        Following rules are strictly oriented:
        #compare#(#s(x),#s(y)) = [0 1] x + [0 1] y + [2]
                                 [0 2]     [0 0]     [3]
                               > [0 1] x + [0 1] y + [1]
                                 [0 0]     [0 0]     [1]
                               = c_15(#compare#(x,y))   
        
        
        Following rules are (at-least) weakly oriented:
        #compare#(#neg(x),#neg(y)) =  [0 1] x + [0 1] y + [0]                     
                                      [0 2]     [0 0]     [1]                     
                                   >= [0 1] x + [0 1] y + [0]                     
                                      [0 0]     [0 0]     [0]                     
                                   =  c_9(#compare#(y,x))                         
        
        #compare#(#pos(x),#pos(y)) =  [0 1] x + [0 1] y + [4]                     
                                      [0 2]     [0 0]     [5]                     
                                   >= [0 1] x + [0 1] y + [2]                     
                                      [0 2]     [0 0]     [2]                     
                                   =  c_13(#compare#(x,y))                        
        
                       #less#(x,y) =  [0 1] x + [0 1] y + [0]                     
                                      [0 1]     [0 0]     [0]                     
                                   >= [0 1] x + [0 1] y + [0]                     
                                      [0 0]     [0 0]     [0]                     
                                   =  c_16(#compare#(x,y))                        
        
                       findMin#(l) =  [1 2] l + [0]                               
                                      [0 0]     [0]                               
                                   >= [1 2] l + [0]                               
                                      [0 0]     [0]                               
                                   =  c_17(findMin#1#(l))                         
        
              findMin#1#(dd(x,xs)) =  [0 2] x + [1 3] xs + [0]                    
                                      [0 3]     [2 5]      [2]                    
                                   >= [0 2] x + [1 3] xs + [0]                    
                                      [0 2]     [2 5]      [1]                    
                                   =  c_18(findMin#2#(findMin(xs),x),findMin#(xs))
        
            findMin#2#(dd(y,ys),x) =  [0 2] x + [0 1] y + [0 1] ys + [0]          
                                      [0 2]     [0 0]     [2 2]      [0]          
                                   >= [0 2] x + [0 1] y + [0]                     
                                      [0 0]     [0 0]     [0]                     
                                   =  c_20(#less#(x,y))                           
        
                       minSort#(l) =  [2 2] l + [0]                               
                                      [0 0]     [0]                               
                                   >= [1 2] l + [0]                               
                                      [0 0]     [0]                               
                                   =  findMin#(l)                                 
        
                       minSort#(l) =  [2 2] l + [0]                               
                                      [0 0]     [0]                               
                                   >= [2 2] l + [0]                               
                                      [0 0]     [0]                               
                                   =  minSort#1#(findMin(l))                      
        
              minSort#1#(dd(x,xs)) =  [2 2] xs + [0]                              
                                      [0 0]      [0]                              
                                   >= [2 2] xs + [0]                              
                                      [0 0]      [0]                              
                                   =  minSort#(xs)                                
        
                        findMin(l) =  [1 1] l + [0]                               
                                      [0 1]     [0]                               
                                   >= [1 1] l + [0]                               
                                      [0 1]     [0]                               
                                   =  findMin#1(l)                                
        
               findMin#1(dd(x,xs)) =  [0 1] x + [1 2] xs + [0]                    
                                      [0 1]     [0 1]      [0]                    
                                   >= [0 1] x + [1 2] xs + [0]                    
                                      [0 1]     [0 1]      [0]                    
                                   =  findMin#2(findMin(xs),x)                    
        
                  findMin#1(nil()) =  [0]                                         
                                      [0]                                         
                                   >= [0]                                         
                                      [0]                                         
                                   =  nil()                                       
        
             findMin#2(dd(y,ys),x) =  [0 1] x + [0 1] y + [1 2] ys + [0]          
                                      [0 1]     [0 1]     [0 1]      [0]          
                                   >= [0 1] x + [0 1] y + [1 2] ys + [0]          
                                      [0 1]     [0 1]     [0 1]      [0]          
                                   =  findMin#3(#less(x,y),x,y,ys)                
        
                findMin#2(nil(),x) =  [0 1] x + [0]                               
                                      [0 1]     [0]                               
                                   >= [0 0] x + [0]                               
                                      [0 1]     [0]                               
                                   =  dd(x,nil())                                 
        
        findMin#3(#false(),x,y,ys) =  [0 1] x + [0 1] y + [1 2] ys + [0]          
                                      [0 1]     [0 1]     [0 1]      [0]          
                                   >= [0 1] x + [0 0] y + [1 2] ys + [0]          
                                      [0 1]     [0 1]     [0 1]      [0]          
                                   =  dd(y,dd(x,ys))                              
        
         findMin#3(#true(),x,y,ys) =  [0 1] x + [0 1] y + [1 2] ys + [0]          
                                      [0 1]     [0 1]     [0 1]      [0]          
                                   >= [0 0] x + [0 1] y + [1 2] ys + [0]          
                                      [0 1]     [0 1]     [0 1]      [0]          
                                   =  dd(x,dd(y,ys))                              
        
***** Step 6.a:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
            #less#(x,y) -> c_16(#compare#(x,y))
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
            minSort#(l) -> findMin#(l)
            minSort#(l) -> minSort#1#(findMin(l))
            minSort#1#(dd(x,xs)) -> minSort#(xs)
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 6.a:1.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
            #less#(x,y) -> c_16(#compare#(x,y))
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
            minSort#(l) -> findMin#(l)
            minSort#(l) -> minSort#1#(findMin(l))
            minSort#1#(dd(x,xs)) -> minSort#(xs)
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:#compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
             -->_1 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):3
             -->_1 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):2
             -->_1 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):1
          
          2:W:#compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
             -->_1 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):3
             -->_1 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):2
             -->_1 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):1
          
          3:W:#compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
             -->_1 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):3
             -->_1 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):2
             -->_1 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):1
          
          4:W:#less#(x,y) -> c_16(#compare#(x,y))
             -->_1 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):3
             -->_1 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):2
             -->_1 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):1
          
          5:W:findMin#(l) -> c_17(findMin#1#(l))
             -->_1 findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs)):6
          
          6:W:findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
             -->_1 findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y)):7
             -->_2 findMin#(l) -> c_17(findMin#1#(l)):5
          
          7:W:findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
             -->_1 #less#(x,y) -> c_16(#compare#(x,y)):4
          
          8:W:minSort#(l) -> findMin#(l)
             -->_1 findMin#(l) -> c_17(findMin#1#(l)):5
          
          9:W:minSort#(l) -> minSort#1#(findMin(l))
             -->_1 minSort#1#(dd(x,xs)) -> minSort#(xs):10
          
          10:W:minSort#1#(dd(x,xs)) -> minSort#(xs)
             -->_1 minSort#(l) -> minSort#1#(findMin(l)):9
             -->_1 minSort#(l) -> findMin#(l):8
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          9: minSort#(l) -> minSort#1#(findMin(l))
          10: minSort#1#(dd(x,xs)) -> minSort#(xs)
          8: minSort#(l) -> findMin#(l)
          5: findMin#(l) -> c_17(findMin#1#(l))
          6: findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
          7: findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
          4: #less#(x,y) -> c_16(#compare#(x,y))
          1: #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
          3: #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
          2: #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
***** Step 6.a:1.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

** Step 6.b:1: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            #less#(x,y) -> c_16(#compare#(x,y))
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak DPs:
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {4}.
        Here rules are labelled as follows:
          1: #less#(x,y) -> c_16(#compare#(x,y))
          2: findMin#(l) -> c_17(findMin#1#(l))
          3: findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
          4: findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
          5: minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
          6: minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
          7: #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
          8: #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
          9: #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
** Step 6.b:2: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak DPs:
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
            #less#(x,y) -> c_16(#compare#(x,y))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {3}
        by application of
          Pre({3}) = {2}.
        Here rules are labelled as follows:
          1: findMin#(l) -> c_17(findMin#1#(l))
          2: findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
          3: findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
          4: minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
          5: minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
          6: #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
          7: #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
          8: #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
          9: #less#(x,y) -> c_16(#compare#(x,y))
** Step 6.b:3: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak DPs:
            #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
            #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
            #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
            #less#(x,y) -> c_16(#compare#(x,y))
            findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:findMin#(l) -> c_17(findMin#1#(l))
             -->_1 findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs)):2
          
          2:S:findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
             -->_1 findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y)):9
             -->_2 findMin#(l) -> c_17(findMin#1#(l)):1
          
          3:S:minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
             -->_1 minSort#1#(dd(x,xs)) -> c_25(minSort#(xs)):4
             -->_2 findMin#(l) -> c_17(findMin#1#(l)):1
          
          4:S:minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
             -->_1 minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l)):3
          
          5:W:#compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
             -->_1 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):7
             -->_1 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):6
             -->_1 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):5
          
          6:W:#compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
             -->_1 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):7
             -->_1 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):6
             -->_1 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):5
          
          7:W:#compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
             -->_1 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):7
             -->_1 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):6
             -->_1 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):5
          
          8:W:#less#(x,y) -> c_16(#compare#(x,y))
             -->_1 #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y)):7
             -->_1 #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y)):6
             -->_1 #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x)):5
          
          9:W:findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
             -->_1 #less#(x,y) -> c_16(#compare#(x,y)):8
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          9: findMin#2#(dd(y,ys),x) -> c_20(#less#(x,y))
          8: #less#(x,y) -> c_16(#compare#(x,y))
          7: #compare#(#s(x),#s(y)) -> c_15(#compare#(x,y))
          6: #compare#(#pos(x),#pos(y)) -> c_13(#compare#(x,y))
          5: #compare#(#neg(x),#neg(y)) -> c_9(#compare#(y,x))
** Step 6.b:4: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:findMin#(l) -> c_17(findMin#1#(l))
             -->_1 findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs)):2
          
          2:S:findMin#1#(dd(x,xs)) -> c_18(findMin#2#(findMin(xs),x),findMin#(xs))
             -->_2 findMin#(l) -> c_17(findMin#1#(l)):1
          
          3:S:minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
             -->_1 minSort#1#(dd(x,xs)) -> c_25(minSort#(xs)):4
             -->_2 findMin#(l) -> c_17(findMin#1#(l)):1
          
          4:S:minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
             -->_1 minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l)):3
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
** Step 6.b:5: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              findMin#(l) -> c_17(findMin#1#(l))
              findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
          - Weak DPs:
              minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
              minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
          - Weak TRS:
              #cklt(#EQ()) -> #false()
              #cklt(#GT()) -> #false()
              #cklt(#LT()) -> #true()
              #compare(#0(),#0()) -> #EQ()
              #compare(#0(),#neg(y)) -> #GT()
              #compare(#0(),#pos(y)) -> #LT()
              #compare(#0(),#s(y)) -> #LT()
              #compare(#neg(x),#0()) -> #LT()
              #compare(#neg(x),#neg(y)) -> #compare(y,x)
              #compare(#neg(x),#pos(y)) -> #LT()
              #compare(#pos(x),#0()) -> #GT()
              #compare(#pos(x),#neg(y)) -> #GT()
              #compare(#pos(x),#pos(y)) -> #compare(x,y)
              #compare(#s(x),#0()) -> #GT()
              #compare(#s(x),#s(y)) -> #compare(x,y)
              #less(x,y) -> #cklt(#compare(x,y))
              findMin(l) -> findMin#1(l)
              findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
              findMin#1(nil()) -> nil()
              findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
              findMin#2(nil(),x) -> dd(x,nil())
              findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
              findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
          - Signature:
              {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
              ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
              ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0
              ,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0
              ,c_22/0,c_23/0,c_24/2,c_25/1,c_26/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
              ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
        
        Problem (S)
          - Strict DPs:
              minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
              minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
          - Weak DPs:
              findMin#(l) -> c_17(findMin#1#(l))
              findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
          - Weak TRS:
              #cklt(#EQ()) -> #false()
              #cklt(#GT()) -> #false()
              #cklt(#LT()) -> #true()
              #compare(#0(),#0()) -> #EQ()
              #compare(#0(),#neg(y)) -> #GT()
              #compare(#0(),#pos(y)) -> #LT()
              #compare(#0(),#s(y)) -> #LT()
              #compare(#neg(x),#0()) -> #LT()
              #compare(#neg(x),#neg(y)) -> #compare(y,x)
              #compare(#neg(x),#pos(y)) -> #LT()
              #compare(#pos(x),#0()) -> #GT()
              #compare(#pos(x),#neg(y)) -> #GT()
              #compare(#pos(x),#pos(y)) -> #compare(x,y)
              #compare(#s(x),#0()) -> #GT()
              #compare(#s(x),#s(y)) -> #compare(x,y)
              #less(x,y) -> #cklt(#compare(x,y))
              findMin(l) -> findMin#1(l)
              findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
              findMin#1(nil()) -> nil()
              findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
              findMin#2(nil(),x) -> dd(x,nil())
              findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
              findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
          - Signature:
              {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
              ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
              ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0
              ,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0
              ,c_22/0,c_23/0,c_24/2,c_25/1,c_26/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
              ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
*** Step 6.b:5.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
        - Weak DPs:
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
          
        The strictly oriented rules are moved into the weak component.
**** Step 6.b:5.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
        - Weak DPs:
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_17) = {1},
          uargs(c_18) = {1},
          uargs(c_24) = {1,2},
          uargs(c_25) = {1}
        
        Following symbols are considered usable:
          {findMin,findMin#1,findMin#2,findMin#3,#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#,findMin#3#
          ,minSort#,minSort#1#}
        TcT has computed the following interpretation:
                  p(#0) = 2                                                                
                 p(#EQ) = 0                                                                
                 p(#GT) = 2                                                                
                 p(#LT) = 1                                                                
               p(#cklt) = 0                                                                
            p(#compare) = 2*x1                                                             
              p(#false) = 0                                                                
               p(#less) = x1^2                                                             
                p(#neg) = 2                                                                
                p(#pos) = 2 + x1                                                           
                  p(#s) = x1                                                               
               p(#true) = 1                                                                
                  p(dd) = 1 + x2                                                           
             p(findMin) = x1                                                               
           p(findMin#1) = x1                                                               
           p(findMin#2) = 1 + x1                                                           
           p(findMin#3) = 2 + x4                                                           
             p(minSort) = 0                                                                
           p(minSort#1) = 0                                                                
                 p(nil) = 0                                                                
              p(#cklt#) = 2*x1                                                             
           p(#compare#) = 1 + 2*x1 + 2*x1*x2 + x2^2                                        
              p(#less#) = x2 + 2*x2^2                                                      
            p(findMin#) = x1                                                               
          p(findMin#1#) = x1                                                               
          p(findMin#2#) = x1 + 2*x1*x2 + 2*x2                                              
          p(findMin#3#) = 1 + x1*x2 + 2*x1^2 + x2*x3 + 2*x2*x4 + x2^2 + x3*x4 + x3^2 + x4^2
            p(minSort#) = 2 + 3*x1 + 2*x1^2                                                
          p(minSort#1#) = 2 + 2*x1 + 2*x1^2                                                
                 p(c_1) = 0                                                                
                 p(c_2) = 0                                                                
                 p(c_3) = 0                                                                
                 p(c_4) = 0                                                                
                 p(c_5) = 1                                                                
                 p(c_6) = 1                                                                
                 p(c_7) = 2                                                                
                 p(c_8) = 0                                                                
                 p(c_9) = 2 + x1                                                           
                p(c_10) = 0                                                                
                p(c_11) = 2                                                                
                p(c_12) = 0                                                                
                p(c_13) = 2 + x1                                                           
                p(c_14) = 0                                                                
                p(c_15) = x1                                                               
                p(c_16) = 1                                                                
                p(c_17) = x1                                                               
                p(c_18) = x1                                                               
                p(c_19) = 0                                                                
                p(c_20) = 0                                                                
                p(c_21) = 0                                                                
                p(c_22) = 0                                                                
                p(c_23) = 0                                                                
                p(c_24) = x1 + x2                                                          
                p(c_25) = x1                                                               
                p(c_26) = 2                                                                
        
        Following rules are strictly oriented:
        findMin#1#(dd(x,xs)) = 1 + xs            
                             > xs                
                             = c_18(findMin#(xs))
        
        
        Following rules are (at-least) weakly oriented:
                       findMin#(l) =  l                                       
                                   >= l                                       
                                   =  c_17(findMin#1#(l))                     
        
                       minSort#(l) =  2 + 3*l + 2*l^2                         
                                   >= 2 + 3*l + 2*l^2                         
                                   =  c_24(minSort#1#(findMin(l)),findMin#(l))
        
              minSort#1#(dd(x,xs)) =  6 + 6*xs + 2*xs^2                       
                                   >= 2 + 3*xs + 2*xs^2                       
                                   =  c_25(minSort#(xs))                      
        
                        findMin(l) =  l                                       
                                   >= l                                       
                                   =  findMin#1(l)                            
        
               findMin#1(dd(x,xs)) =  1 + xs                                  
                                   >= 1 + xs                                  
                                   =  findMin#2(findMin(xs),x)                
        
                  findMin#1(nil()) =  0                                       
                                   >= 0                                       
                                   =  nil()                                   
        
             findMin#2(dd(y,ys),x) =  2 + ys                                  
                                   >= 2 + ys                                  
                                   =  findMin#3(#less(x,y),x,y,ys)            
        
                findMin#2(nil(),x) =  1                                       
                                   >= 1                                       
                                   =  dd(x,nil())                             
        
        findMin#3(#false(),x,y,ys) =  2 + ys                                  
                                   >= 2 + ys                                  
                                   =  dd(y,dd(x,ys))                          
        
         findMin#3(#true(),x,y,ys) =  2 + ys                                  
                                   >= 2 + ys                                  
                                   =  dd(x,dd(y,ys))                          
        
**** Step 6.b:5.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            findMin#(l) -> c_17(findMin#1#(l))
        - Weak DPs:
            findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 6.b:5.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            findMin#(l) -> c_17(findMin#1#(l))
        - Weak DPs:
            findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: findMin#(l) -> c_17(findMin#1#(l))
          
        Consider the set of all dependency pairs
          1: findMin#(l) -> c_17(findMin#1#(l))
          2: findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
          3: minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
          4: minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,2}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
***** Step 6.b:5.a:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            findMin#(l) -> c_17(findMin#1#(l))
        - Weak DPs:
            findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_17) = {1},
          uargs(c_18) = {1},
          uargs(c_24) = {1,2},
          uargs(c_25) = {1}
        
        Following symbols are considered usable:
          {#cklt,#less,findMin,findMin#1,findMin#2,findMin#3,#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
          ,findMin#3#,minSort#,minSort#1#}
        TcT has computed the following interpretation:
                  p(#0) = 2                              
                 p(#EQ) = 0                              
                 p(#GT) = 0                              
                 p(#LT) = 0                              
               p(#cklt) = 1                              
            p(#compare) = 1 + x2                         
              p(#false) = 1                              
               p(#less) = 1                              
                p(#neg) = 0                              
                p(#pos) = 0                              
                  p(#s) = 1                              
               p(#true) = 1                              
                  p(dd) = 2 + x1 + x2                    
             p(findMin) = x1                             
           p(findMin#1) = x1                             
           p(findMin#2) = 2 + x1 + x2                    
           p(findMin#3) = 2*x1 + x1*x2 + 2*x1^2 + x3 + x4
             p(minSort) = 2 + x1                         
           p(minSort#1) = 2 + 2*x1                       
                 p(nil) = 0                              
              p(#cklt#) = 0                              
           p(#compare#) = 2*x2 + x2^2                    
              p(#less#) = 2 + 2*x2 + 2*x2^2              
            p(findMin#) = 2 + 2*x1                       
          p(findMin#1#) = 2*x1                           
          p(findMin#2#) = x1                             
          p(findMin#3#) = x1*x4 + x2 + 2*x3 + 2*x4^2     
            p(minSort#) = 2 + 2*x1 + x1^2                
          p(minSort#1#) = x1^2                           
                 p(c_1) = 0                              
                 p(c_2) = 0                              
                 p(c_3) = 0                              
                 p(c_4) = 0                              
                 p(c_5) = 0                              
                 p(c_6) = 2                              
                 p(c_7) = 0                              
                 p(c_8) = 2                              
                 p(c_9) = 0                              
                p(c_10) = 0                              
                p(c_11) = 2                              
                p(c_12) = 1                              
                p(c_13) = x1                             
                p(c_14) = 2                              
                p(c_15) = 1                              
                p(c_16) = 1                              
                p(c_17) = 1 + x1                         
                p(c_18) = x1                             
                p(c_19) = 0                              
                p(c_20) = 0                              
                p(c_21) = 0                              
                p(c_22) = 2                              
                p(c_23) = 2                              
                p(c_24) = x1 + x2                        
                p(c_25) = x1                             
                p(c_26) = 1                              
        
        Following rules are strictly oriented:
        findMin#(l) = 2 + 2*l            
                    > 1 + 2*l            
                    = c_17(findMin#1#(l))
        
        
        Following rules are (at-least) weakly oriented:
              findMin#1#(dd(x,xs)) =  4 + 2*x + 2*xs                          
                                   >= 2 + 2*xs                                
                                   =  c_18(findMin#(xs))                      
        
                       minSort#(l) =  2 + 2*l + l^2                           
                                   >= 2 + 2*l + l^2                           
                                   =  c_24(minSort#1#(findMin(l)),findMin#(l))
        
              minSort#1#(dd(x,xs)) =  4 + 4*x + 2*x*xs + x^2 + 4*xs + xs^2    
                                   >= 2 + 2*xs + xs^2                         
                                   =  c_25(minSort#(xs))                      
        
                      #cklt(#EQ()) =  1                                       
                                   >= 1                                       
                                   =  #false()                                
        
                      #cklt(#GT()) =  1                                       
                                   >= 1                                       
                                   =  #false()                                
        
                      #cklt(#LT()) =  1                                       
                                   >= 1                                       
                                   =  #true()                                 
        
                        #less(x,y) =  1                                       
                                   >= 1                                       
                                   =  #cklt(#compare(x,y))                    
        
                        findMin(l) =  l                                       
                                   >= l                                       
                                   =  findMin#1(l)                            
        
               findMin#1(dd(x,xs)) =  2 + x + xs                              
                                   >= 2 + x + xs                              
                                   =  findMin#2(findMin(xs),x)                
        
                  findMin#1(nil()) =  0                                       
                                   >= 0                                       
                                   =  nil()                                   
        
             findMin#2(dd(y,ys),x) =  4 + x + y + ys                          
                                   >= 4 + x + y + ys                          
                                   =  findMin#3(#less(x,y),x,y,ys)            
        
                findMin#2(nil(),x) =  2 + x                                   
                                   >= 2 + x                                   
                                   =  dd(x,nil())                             
        
        findMin#3(#false(),x,y,ys) =  4 + x + y + ys                          
                                   >= 4 + x + y + ys                          
                                   =  dd(y,dd(x,ys))                          
        
         findMin#3(#true(),x,y,ys) =  4 + x + y + ys                          
                                   >= 4 + x + y + ys                          
                                   =  dd(x,dd(y,ys))                          
        
***** Step 6.b:5.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 6.b:5.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:findMin#(l) -> c_17(findMin#1#(l))
             -->_1 findMin#1#(dd(x,xs)) -> c_18(findMin#(xs)):2
          
          2:W:findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
             -->_1 findMin#(l) -> c_17(findMin#1#(l)):1
          
          3:W:minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
             -->_1 minSort#1#(dd(x,xs)) -> c_25(minSort#(xs)):4
             -->_2 findMin#(l) -> c_17(findMin#1#(l)):1
          
          4:W:minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
             -->_1 minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
          4: minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
          1: findMin#(l) -> c_17(findMin#1#(l))
          2: findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
***** Step 6.b:5.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 6.b:5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak DPs:
            findMin#(l) -> c_17(findMin#1#(l))
            findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
             -->_2 findMin#(l) -> c_17(findMin#1#(l)):3
             -->_1 minSort#1#(dd(x,xs)) -> c_25(minSort#(xs)):2
          
          2:S:minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
             -->_1 minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l)):1
          
          3:W:findMin#(l) -> c_17(findMin#1#(l))
             -->_1 findMin#1#(dd(x,xs)) -> c_18(findMin#(xs)):4
          
          4:W:findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
             -->_1 findMin#(l) -> c_17(findMin#1#(l)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: findMin#(l) -> c_17(findMin#1#(l))
          4: findMin#1#(dd(x,xs)) -> c_18(findMin#(xs))
*** Step 6.b:5.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/2,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l))
             -->_1 minSort#1#(dd(x,xs)) -> c_25(minSort#(xs)):2
          
          2:S:minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
             -->_1 minSort#(l) -> c_24(minSort#1#(findMin(l)),findMin#(l)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          minSort#(l) -> c_24(minSort#1#(findMin(l)))
*** Step 6.b:5.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minSort#(l) -> c_24(minSort#1#(findMin(l)))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/1,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
          
        Consider the set of all dependency pairs
          1: minSort#(l) -> c_24(minSort#1#(findMin(l)))
          2: minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {2}
        These cover all (indirect) predecessors of dependency pairs
          {1,2}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
**** Step 6.b:5.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minSort#(l) -> c_24(minSort#1#(findMin(l)))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/1,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_24) = {1},
          uargs(c_25) = {1}
        
        Following symbols are considered usable:
          {findMin,findMin#1,findMin#2,findMin#3,#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#,findMin#3#
          ,minSort#,minSort#1#}
        TcT has computed the following interpretation:
                  p(#0) = [9]                           
                 p(#EQ) = [1]                           
                 p(#GT) = [4]                           
                 p(#LT) = [4]                           
               p(#cklt) = [5] x1 + [8]                  
            p(#compare) = [2] x1 + [0]                  
              p(#false) = [0]                           
               p(#less) = [1] x1 + [1] x2 + [0]         
                p(#neg) = [1] x1 + [4]                  
                p(#pos) = [1] x1 + [0]                  
                  p(#s) = [1] x1 + [0]                  
               p(#true) = [0]                           
                  p(dd) = [1] x2 + [1]                  
             p(findMin) = [1] x1 + [0]                  
           p(findMin#1) = [1] x1 + [0]                  
           p(findMin#2) = [1] x1 + [1]                  
           p(findMin#3) = [1] x4 + [2]                  
             p(minSort) = [1] x1 + [8]                  
           p(minSort#1) = [8]                           
                 p(nil) = [0]                           
              p(#cklt#) = [1] x1 + [2]                  
           p(#compare#) = [2] x2 + [0]                  
              p(#less#) = [2] x1 + [1] x2 + [1]         
            p(findMin#) = [1]                           
          p(findMin#1#) = [1]                           
          p(findMin#2#) = [1] x2 + [8]                  
          p(findMin#3#) = [8] x2 + [4] x3 + [1] x4 + [1]
            p(minSort#) = [4] x1 + [0]                  
          p(minSort#1#) = [4] x1 + [0]                  
                 p(c_1) = [2]                           
                 p(c_2) = [1]                           
                 p(c_3) = [1]                           
                 p(c_4) = [1]                           
                 p(c_5) = [0]                           
                 p(c_6) = [1]                           
                 p(c_7) = [0]                           
                 p(c_8) = [0]                           
                 p(c_9) = [0]                           
                p(c_10) = [0]                           
                p(c_11) = [0]                           
                p(c_12) = [0]                           
                p(c_13) = [1] x1 + [1]                  
                p(c_14) = [1]                           
                p(c_15) = [1] x1 + [0]                  
                p(c_16) = [2] x1 + [1]                  
                p(c_17) = [4] x1 + [1]                  
                p(c_18) = [0]                           
                p(c_19) = [1]                           
                p(c_20) = [1] x1 + [1]                  
                p(c_21) = [0]                           
                p(c_22) = [2]                           
                p(c_23) = [2]                           
                p(c_24) = [1] x1 + [0]                  
                p(c_25) = [1] x1 + [0]                  
                p(c_26) = [4]                           
        
        Following rules are strictly oriented:
        minSort#1#(dd(x,xs)) = [4] xs + [4]      
                             > [4] xs + [0]      
                             = c_25(minSort#(xs))
        
        
        Following rules are (at-least) weakly oriented:
                       minSort#(l) =  [4] l + [0]                 
                                   >= [4] l + [0]                 
                                   =  c_24(minSort#1#(findMin(l)))
        
                        findMin(l) =  [1] l + [0]                 
                                   >= [1] l + [0]                 
                                   =  findMin#1(l)                
        
               findMin#1(dd(x,xs)) =  [1] xs + [1]                
                                   >= [1] xs + [1]                
                                   =  findMin#2(findMin(xs),x)    
        
                  findMin#1(nil()) =  [0]                         
                                   >= [0]                         
                                   =  nil()                       
        
             findMin#2(dd(y,ys),x) =  [1] ys + [2]                
                                   >= [1] ys + [2]                
                                   =  findMin#3(#less(x,y),x,y,ys)
        
                findMin#2(nil(),x) =  [1]                         
                                   >= [1]                         
                                   =  dd(x,nil())                 
        
        findMin#3(#false(),x,y,ys) =  [1] ys + [2]                
                                   >= [1] ys + [2]                
                                   =  dd(y,dd(x,ys))              
        
         findMin#3(#true(),x,y,ys) =  [1] ys + [2]                
                                   >= [1] ys + [2]                
                                   =  dd(x,dd(y,ys))              
        
**** Step 6.b:5.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            minSort#(l) -> c_24(minSort#1#(findMin(l)))
        - Weak DPs:
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/1,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 6.b:5.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            minSort#(l) -> c_24(minSort#1#(findMin(l)))
            minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/1,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:minSort#(l) -> c_24(minSort#1#(findMin(l)))
             -->_1 minSort#1#(dd(x,xs)) -> c_25(minSort#(xs)):2
          
          2:W:minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
             -->_1 minSort#(l) -> c_24(minSort#1#(findMin(l))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: minSort#(l) -> c_24(minSort#1#(findMin(l)))
          2: minSort#1#(dd(x,xs)) -> c_25(minSort#(xs))
**** Step 6.b:5.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(y)) -> #GT()
            #compare(#0(),#pos(y)) -> #LT()
            #compare(#0(),#s(y)) -> #LT()
            #compare(#neg(x),#0()) -> #LT()
            #compare(#neg(x),#neg(y)) -> #compare(y,x)
            #compare(#neg(x),#pos(y)) -> #LT()
            #compare(#pos(x),#0()) -> #GT()
            #compare(#pos(x),#neg(y)) -> #GT()
            #compare(#pos(x),#pos(y)) -> #compare(x,y)
            #compare(#s(x),#0()) -> #GT()
            #compare(#s(x),#s(y)) -> #compare(x,y)
            #less(x,y) -> #cklt(#compare(x,y))
            findMin(l) -> findMin#1(l)
            findMin#1(dd(x,xs)) -> findMin#2(findMin(xs),x)
            findMin#1(nil()) -> nil()
            findMin#2(dd(y,ys),x) -> findMin#3(#less(x,y),x,y,ys)
            findMin#2(nil(),x) -> dd(x,nil())
            findMin#3(#false(),x,y,ys) -> dd(y,dd(x,ys))
            findMin#3(#true(),x,y,ys) -> dd(x,dd(y,ys))
        - Signature:
            {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1,#cklt#/1
            ,#compare#/2,#less#/2,findMin#/1,findMin#1#/1,findMin#2#/2,findMin#3#/4,minSort#/1,minSort#1#/1} / {#0/0
            ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,dd/2,nil/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0
            ,c_8/0,c_9/1,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/1,c_19/0,c_20/1,c_21/0,c_22/0
            ,c_23/0,c_24/1,c_25/1,c_26/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#cklt#,#compare#,#less#,findMin#,findMin#1#,findMin#2#
            ,findMin#3#,minSort#,minSort#1#} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,dd,nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^3))