WORST_CASE(?,O(n^3)) * Step 1: DependencyPairs WORST_CASE(?,O(n^3)) + Considered Problem: - Strict TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() shuffle(dd(x,xs)) -> dd(x,shuffle(rev(xs))) shuffle(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1} / {dd/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {@,rev,shuffle} and constructors {dd,nil} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) @#(nil(),ys) -> c_2() rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) rev#(nil()) -> c_4() shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) shuffle#(nil()) -> c_6() Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) @#(nil(),ys) -> c_2() rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) rev#(nil()) -> c_4() shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) shuffle#(nil()) -> c_6() - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() shuffle(dd(x,xs)) -> dd(x,shuffle(rev(xs))) shuffle(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) @#(nil(),ys) -> c_2() rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) rev#(nil()) -> c_4() shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) shuffle#(nil()) -> c_6() * Step 3: PredecessorEstimation WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) @#(nil(),ys) -> c_2() rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) rev#(nil()) -> c_4() shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) shuffle#(nil()) -> c_6() - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,4,6} by application of Pre({2,4,6}) = {1,3,5}. Here rules are labelled as follows: 1: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) 2: @#(nil(),ys) -> c_2() 3: rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) 4: rev#(nil()) -> c_4() 5: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) 6: shuffle#(nil()) -> c_6() * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak DPs: @#(nil(),ys) -> c_2() rev#(nil()) -> c_4() shuffle#(nil()) -> c_6() - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:@#(dd(x,xs),ys) -> c_1(@#(xs,ys)) -->_1 @#(nil(),ys) -> c_2():4 -->_1 @#(dd(x,xs),ys) -> c_1(@#(xs,ys)):1 2:S:rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) -->_2 rev#(nil()) -> c_4():5 -->_1 @#(nil(),ys) -> c_2():4 -->_2 rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)):2 -->_1 @#(dd(x,xs),ys) -> c_1(@#(xs,ys)):1 3:S:shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) -->_1 shuffle#(nil()) -> c_6():6 -->_2 rev#(nil()) -> c_4():5 -->_1 shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)):3 -->_2 rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)):2 4:W:@#(nil(),ys) -> c_2() 5:W:rev#(nil()) -> c_4() 6:W:shuffle#(nil()) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: shuffle#(nil()) -> c_6() 5: rev#(nil()) -> c_4() 4: @#(nil(),ys) -> c_2() * Step 5: Decompose WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) - Weak DPs: rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} Problem (S) - Strict DPs: rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} ** Step 5.a:1: DecomposeDG WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) - Weak DPs: rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) and a lower component @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) Further, following extension rules are added to the lower component. shuffle#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) *** Step 5.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) The strictly oriented rules are moved into the weak component. **** Step 5.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: {@,rev,@#,rev#,shuffle#} TcT has computed the following interpretation: p(@) = [1] x1 + [1] x2 + [0] p(dd) = [1] x2 + [4] p(nil) = [0] p(rev) = [1] x1 + [0] p(shuffle) = [4] x1 + [2] p(@#) = [2] p(rev#) = [8] x1 + [1] p(shuffle#) = [1] x1 + [1] p(c_1) = [1] x1 + [1] p(c_2) = [4] p(c_3) = [0] p(c_4) = [1] p(c_5) = [1] x1 + [1] p(c_6) = [4] Following rules are strictly oriented: shuffle#(dd(x,xs)) = [1] xs + [5] > [1] xs + [2] = c_5(shuffle#(rev(xs)),rev#(xs)) Following rules are (at-least) weakly oriented: @(dd(x,xs),ys) = [1] xs + [1] ys + [4] >= [1] xs + [1] ys + [4] = dd(x,@(xs,ys)) @(nil(),ys) = [1] ys + [0] >= [1] ys + [0] = ys rev(dd(x,xs)) = [1] xs + [4] >= [1] xs + [4] = @(rev(xs),dd(x,nil())) rev(nil()) = [0] >= [0] = nil() **** Step 5.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) -->_1 shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) **** Step 5.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 5.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) - Weak DPs: rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) The strictly oriented rules are moved into the weak component. **** Step 5.a:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) - Weak DPs: rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_3) = {1,2} Following symbols are considered usable: {@,rev,@#,rev#,shuffle#} TcT has computed the following interpretation: p(@) = x1 + x2 p(dd) = 2 + x2 p(nil) = 0 p(rev) = x1 p(shuffle) = x1 + x1^2 p(@#) = 2 + 4*x1 + x2 p(rev#) = 1 + x1 + x1^2 p(shuffle#) = 2*x1^2 p(c_1) = 4 + x1 p(c_2) = 0 p(c_3) = x1 + x2 p(c_4) = 2 p(c_5) = 2 + x1 + x2 p(c_6) = 1 Following rules are strictly oriented: @#(dd(x,xs),ys) = 10 + 4*xs + ys > 6 + 4*xs + ys = c_1(@#(xs,ys)) Following rules are (at-least) weakly oriented: rev#(dd(x,xs)) = 7 + 5*xs + xs^2 >= 5 + 5*xs + xs^2 = c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) = 8 + 8*xs + 2*xs^2 >= 1 + xs + xs^2 = rev#(xs) shuffle#(dd(x,xs)) = 8 + 8*xs + 2*xs^2 >= 2*xs^2 = shuffle#(rev(xs)) @(dd(x,xs),ys) = 2 + xs + ys >= 2 + xs + ys = dd(x,@(xs,ys)) @(nil(),ys) = ys >= ys = ys rev(dd(x,xs)) = 2 + xs >= 2 + xs = @(rev(xs),dd(x,nil())) rev(nil()) = 0 >= 0 = nil() **** Step 5.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> rev#(xs) shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:@#(dd(x,xs),ys) -> c_1(@#(xs,ys)) -->_1 @#(dd(x,xs),ys) -> c_1(@#(xs,ys)):1 2:W:rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) -->_2 rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)):2 -->_1 @#(dd(x,xs),ys) -> c_1(@#(xs,ys)):1 3:W:shuffle#(dd(x,xs)) -> rev#(xs) -->_1 rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)):2 4:W:shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) -->_1 shuffle#(dd(x,xs)) -> shuffle#(rev(xs)):4 -->_1 shuffle#(dd(x,xs)) -> rev#(xs):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: shuffle#(dd(x,xs)) -> shuffle#(rev(xs)) 3: shuffle#(dd(x,xs)) -> rev#(xs) 2: rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) 1: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) **** Step 5.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak DPs: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) -->_1 @#(dd(x,xs),ys) -> c_1(@#(xs,ys)):3 -->_2 rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)):1 2:S:shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) -->_1 shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)):2 -->_2 rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)):1 3:W:@#(dd(x,xs),ys) -> c_1(@#(xs,ys)) -->_1 @#(dd(x,xs),ys) -> c_1(@#(xs,ys)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: @#(dd(x,xs),ys) -> c_1(@#(xs,ys)) ** Step 5.b:2: SimplifyRHS WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)) -->_2 rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)):1 2:S:shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) -->_1 shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)):2 -->_2 rev#(dd(x,xs)) -> c_3(@#(rev(xs),dd(x,nil())),rev#(xs)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: rev#(dd(x,xs)) -> c_3(rev#(xs)) ** Step 5.b:3: Decompose WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: rev#(dd(x,xs)) -> c_3(rev#(xs)) shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: rev#(dd(x,xs)) -> c_3(rev#(xs)) - Weak DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} Problem (S) - Strict DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak DPs: rev#(dd(x,xs)) -> c_3(rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} *** Step 5.b:3.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: rev#(dd(x,xs)) -> c_3(rev#(xs)) - Weak DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: rev#(dd(x,xs)) -> c_3(rev#(xs)) The strictly oriented rules are moved into the weak component. **** Step 5.b:3.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: rev#(dd(x,xs)) -> c_3(rev#(xs)) - Weak DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_5) = {1,2} Following symbols are considered usable: {@,rev,@#,rev#,shuffle#} TcT has computed the following interpretation: p(@) = x1 + x2 p(dd) = 1 + x2 p(nil) = 0 p(rev) = x1 p(shuffle) = 0 p(@#) = 4 + x1 + 4*x1^2 + 4*x2 + 2*x2^2 p(rev#) = 2*x1 p(shuffle#) = 4*x1^2 p(c_1) = 1 p(c_2) = 1 p(c_3) = x1 p(c_4) = 0 p(c_5) = x1 + x2 p(c_6) = 0 Following rules are strictly oriented: rev#(dd(x,xs)) = 2 + 2*xs > 2*xs = c_3(rev#(xs)) Following rules are (at-least) weakly oriented: shuffle#(dd(x,xs)) = 4 + 8*xs + 4*xs^2 >= 2*xs + 4*xs^2 = c_5(shuffle#(rev(xs)),rev#(xs)) @(dd(x,xs),ys) = 1 + xs + ys >= 1 + xs + ys = dd(x,@(xs,ys)) @(nil(),ys) = ys >= ys = ys rev(dd(x,xs)) = 1 + xs >= 1 + xs = @(rev(xs),dd(x,nil())) rev(nil()) = 0 >= 0 = nil() **** Step 5.b:3.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: rev#(dd(x,xs)) -> c_3(rev#(xs)) shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.b:3.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: rev#(dd(x,xs)) -> c_3(rev#(xs)) shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:rev#(dd(x,xs)) -> c_3(rev#(xs)) -->_1 rev#(dd(x,xs)) -> c_3(rev#(xs)):1 2:W:shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) -->_1 shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)):2 -->_2 rev#(dd(x,xs)) -> c_3(rev#(xs)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) 1: rev#(dd(x,xs)) -> c_3(rev#(xs)) **** Step 5.b:3.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 5.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak DPs: rev#(dd(x,xs)) -> c_3(rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) -->_2 rev#(dd(x,xs)) -> c_3(rev#(xs)):2 -->_1 shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)):1 2:W:rev#(dd(x,xs)) -> c_3(rev#(xs)) -->_1 rev#(dd(x,xs)) -> c_3(rev#(xs)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: rev#(dd(x,xs)) -> c_3(rev#(xs)) *** Step 5.b:3.b:2: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)) -->_1 shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs)),rev#(xs)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs))) *** Step 5.b:3.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs))) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs))) The strictly oriented rules are moved into the weak component. **** Step 5.b:3.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs))) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: {@,rev,@#,rev#,shuffle#} TcT has computed the following interpretation: p(@) = [1] x1 + [1] x2 + [0] p(dd) = [1] x1 + [1] x2 + [2] p(nil) = [0] p(rev) = [1] x1 + [0] p(shuffle) = [1] x1 + [4] p(@#) = [1] x1 + [8] x2 + [0] p(rev#) = [1] x1 + [8] p(shuffle#) = [1] x1 + [0] p(c_1) = [2] p(c_2) = [1] p(c_3) = [1] x1 + [0] p(c_4) = [1] p(c_5) = [1] x1 + [0] p(c_6) = [0] Following rules are strictly oriented: shuffle#(dd(x,xs)) = [1] x + [1] xs + [2] > [1] xs + [0] = c_5(shuffle#(rev(xs))) Following rules are (at-least) weakly oriented: @(dd(x,xs),ys) = [1] x + [1] xs + [1] ys + [2] >= [1] x + [1] xs + [1] ys + [2] = dd(x,@(xs,ys)) @(nil(),ys) = [1] ys + [0] >= [1] ys + [0] = ys rev(dd(x,xs)) = [1] x + [1] xs + [2] >= [1] x + [1] xs + [2] = @(rev(xs),dd(x,nil())) rev(nil()) = [0] >= [0] = nil() **** Step 5.b:3.b:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs))) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.b:3.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs))) - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs))) -->_1 shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: shuffle#(dd(x,xs)) -> c_5(shuffle#(rev(xs))) **** Step 5.b:3.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: @(dd(x,xs),ys) -> dd(x,@(xs,ys)) @(nil(),ys) -> ys rev(dd(x,xs)) -> @(rev(xs),dd(x,nil())) rev(nil()) -> nil() - Signature: {@/2,rev/1,shuffle/1,@#/2,rev#/1,shuffle#/1} / {dd/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {@#,rev#,shuffle#} and constructors {dd,nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^3))