WORST_CASE(?,O(n^1))
* Step 1: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(s(x),y) -> s(+(x,y))
            not(false()) -> true()
            not(true()) -> false()
            odd(0()) -> false()
            odd(s(x)) -> not(odd(x))
        - Signature:
            {+/2,not/1,odd/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+,not,odd} and constructors {0,false,s,true}
    + Applied Processor:
        Ara {araHeuristics = Heuristics, minDegree = 1, maxDegree = 2, araTimeout = 3, araRuleShifting = Nothing}
    + Details:
        Signatures used:
        ----------------
          + :: ["A"(1) x "A"(1)] -(1)-> "A"(0)
          0 :: [] -(0)-> "A"(1)
          0 :: [] -(0)-> "A"(2)
          false :: [] -(0)-> "A"(0)
          not :: ["A"(0)] -(1)-> "A"(0)
          odd :: ["A"(2)] -(1)-> "A"(0)
          s :: ["A"(1)] -(1)-> "A"(1)
          s :: ["A"(2)] -(2)-> "A"(2)
          s :: ["A"(0)] -(0)-> "A"(0)
          true :: [] -(0)-> "A"(0)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "0_A" :: [] -(0)-> "A"(0)
          "false_A" :: [] -(0)-> "A"(0)
          "s_A" :: ["A"(0)] -(0)-> "A"(0)
          "true_A" :: [] -(0)-> "A"(0)
        

WORST_CASE(?,O(n^1))