WORST_CASE(?,O(n^1))
* Step 1: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__f(X)) -> f(activate(X))
            activate(n__h(X)) -> h(activate(X))
            f(X) -> g(n__h(n__f(X)))
            f(X) -> n__f(X)
            h(X) -> n__h(X)
        - Signature:
            {activate/1,f/1,h/1} / {g/1,n__f/1,n__h/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,f,h} and constructors {g,n__f,n__h}
    + Applied Processor:
        Ara {araHeuristics = Heuristics, minDegree = 1, maxDegree = 2, araTimeout = 3, araRuleShifting = Nothing}
    + Details:
        Signatures used:
        ----------------
          activate :: ["A"(2)] -(1)-> "A"(0)
          f :: ["A"(0)] -(1)-> "A"(0)
          g :: ["A"(0)] -(0)-> "A"(0)
          h :: ["A"(0)] -(1)-> "A"(0)
          n__f :: ["A"(2)] -(2)-> "A"(2)
          n__f :: ["A"(0)] -(0)-> "A"(0)
          n__h :: ["A"(2)] -(2)-> "A"(2)
          n__h :: ["A"(0)] -(0)-> "A"(0)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "g_A" :: ["A"(0)] -(0)-> "A"(0)
          "n__f_A" :: ["A"(0)] -(0)-> "A"(0)
          "n__h_A" :: ["A"(0)] -(0)-> "A"(0)
        

WORST_CASE(?,O(n^1))