WORST_CASE(?,O(n^2)) * Step 1: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2} / {0/0,s/1,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,and,plus,x} and constructors {0,s,tt} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() and#(tt(),X) -> c_2(activate#(X)) plus#(N,0()) -> c_3() plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,0()) -> c_5() x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() and#(tt(),X) -> c_2(activate#(X)) plus#(N,0()) -> c_3() plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,0()) -> c_5() x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) - Weak TRS: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,5} by application of Pre({1,3,5}) = {2,4,6}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: and#(tt(),X) -> c_2(activate#(X)) 3: plus#(N,0()) -> c_3() 4: plus#(N,s(M)) -> c_4(plus#(N,M)) 5: x#(N,0()) -> c_5() 6: x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) * Step 3: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: and#(tt(),X) -> c_2(activate#(X)) plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) - Weak DPs: activate#(X) -> c_1() plus#(N,0()) -> c_3() x#(N,0()) -> c_5() - Weak TRS: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {}. Here rules are labelled as follows: 1: and#(tt(),X) -> c_2(activate#(X)) 2: plus#(N,s(M)) -> c_4(plus#(N,M)) 3: x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) 4: activate#(X) -> c_1() 5: plus#(N,0()) -> c_3() 6: x#(N,0()) -> c_5() * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) - Weak DPs: activate#(X) -> c_1() and#(tt(),X) -> c_2(activate#(X)) plus#(N,0()) -> c_3() x#(N,0()) -> c_5() - Weak TRS: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:plus#(N,s(M)) -> c_4(plus#(N,M)) -->_1 plus#(N,0()) -> c_3():5 -->_1 plus#(N,s(M)) -> c_4(plus#(N,M)):1 2:S:x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) -->_2 x#(N,0()) -> c_5():6 -->_1 plus#(N,0()) -> c_3():5 -->_2 x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)):2 -->_1 plus#(N,s(M)) -> c_4(plus#(N,M)):1 3:W:activate#(X) -> c_1() 4:W:and#(tt(),X) -> c_2(activate#(X)) -->_1 activate#(X) -> c_1():3 5:W:plus#(N,0()) -> c_3() 6:W:x#(N,0()) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: and#(tt(),X) -> c_2(activate#(X)) 3: activate#(X) -> c_1() 6: x#(N,0()) -> c_5() 5: plus#(N,0()) -> c_3() * Step 5: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) - Weak TRS: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) * Step 6: DecomposeDG WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) - Weak TRS: plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) and a lower component plus#(N,s(M)) -> c_4(plus#(N,M)) Further, following extension rules are added to the lower component. x#(N,s(M)) -> plus#(x(N,M),N) x#(N,s(M)) -> x#(N,M) ** Step 6.a:1: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) - Weak TRS: plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) -->_2 x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: x#(N,s(M)) -> c_6(x#(N,M)) ** Step 6.a:2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: x#(N,s(M)) -> c_6(x#(N,M)) - Weak TRS: plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: x#(N,s(M)) -> c_6(x#(N,M)) ** Step 6.a:3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: x#(N,s(M)) -> c_6(x#(N,M)) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(activate) = [0] p(and) = [0] p(plus) = [0] p(s) = [1] x1 + [5] p(tt) = [0] p(x) = [0] p(activate#) = [0] p(and#) = [0] p(plus#) = [0] p(x#) = [3] x2 + [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [1] x1 + [0] Following rules are strictly oriented: x#(N,s(M)) = [3] M + [15] > [3] M + [0] = c_6(x#(N,M)) Following rules are (at-least) weakly oriented: Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 6.a:4: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: x#(N,s(M)) -> c_6(x#(N,M)) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 6.b:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: plus#(N,s(M)) -> c_4(plus#(N,M)) - Weak DPs: x#(N,s(M)) -> plus#(x(N,M),N) x#(N,s(M)) -> x#(N,M) - Weak TRS: plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1} Following symbols are considered usable: {activate#,and#,plus#,x#} TcT has computed the following interpretation: p(0) = [1] p(activate) = [0] p(and) = [1] x2 + [0] p(plus) = [3] x1 + [7] x2 + [0] p(s) = [1] x1 + [2] p(tt) = [0] p(x) = [6] x1 + [0] p(activate#) = [0] p(and#) = [2] x1 + [0] p(plus#) = [1] x2 + [4] p(x#) = [8] x1 + [4] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [0] p(c_6) = [8] x2 + [0] Following rules are strictly oriented: plus#(N,s(M)) = [1] M + [6] > [1] M + [4] = c_4(plus#(N,M)) Following rules are (at-least) weakly oriented: x#(N,s(M)) = [8] N + [4] >= [1] N + [4] = plus#(x(N,M),N) x#(N,s(M)) = [8] N + [4] >= [8] N + [4] = x#(N,M) ** Step 6.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,s(M)) -> plus#(x(N,M),N) x#(N,s(M)) -> x#(N,M) - Weak TRS: plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))