WORST_CASE(?,O(n^2))
* Step 1: Ara WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            max(L(x)) -> x
            max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z)))))
            max(N(L(0()),L(y))) -> y
            max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y))))
        - Signature:
            {max/1} / {0/0,L/1,N/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {max} and constructors {0,L,N,s}
    + Applied Processor:
        Ara {araHeuristics = NoHeuristics, minDegree = 1, maxDegree = 2, araTimeout = 5, araRuleShifting = Nothing}
    + Details:
        Signatures used:
        ----------------
          0 :: [] -(0)-> "A"(0, 6)
          L :: ["A"(0, 6)] -(0)-> "A"(2, 6)
          L :: ["A"(0, 6)] -(0)-> "A"(0, 6)
          L :: ["A"(0, 6)] -(0)-> "A"(8, 6)
          L :: ["A"(0, 6)] -(0)-> "A"(13, 6)
          L :: ["A"(0, 6)] -(0)-> "A"(12, 6)
          N :: ["A"(0, 6) x "A"(8, 6)] -(2)-> "A"(2, 6)
          N :: ["A"(0, 6) x "A"(14, 6)] -(8)-> "A"(8, 6)
          N :: ["A"(0, 6) x "A"(9, 6)] -(3)-> "A"(3, 6)
          max :: ["A"(2, 6)] -(4)-> "A"(0, 6)
          s :: ["A"(0, 6)] -(6)-> "A"(0, 6)
          s :: ["A"(0, 6)] -(6)-> "A"(2, 6)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "0_A" :: [] -(0)-> "A"(1, 0)
          "0_A" :: [] -(0)-> "A"(0, 1)
          "L_A" :: ["A"(0, 0)] -(0)-> "A"(1, 0)
          "L_A" :: ["A"(0, 1)] -(0)-> "A"(0, 1)
          "N_A" :: ["A"(0, 0) x "A"(1, 0)] -(1)-> "A"(1, 0)
          "N_A" :: ["A"(0, 1) x "A"(1, 1)] -(0)-> "A"(0, 1)
          "s_A" :: ["A"(0, 0)] -(0)-> "A"(1, 0)
          "s_A" :: ["A"(0, 1)] -(1)-> "A"(0, 1)
        

WORST_CASE(?,O(n^2))