WORST_CASE(?,O(n^1)) * Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) D(+(x,y)) -> +(D(x),D(y)) D(-(x,y)) -> -(D(x),D(y)) D(constant()) -> 0() D(t()) -> 1() - Signature: {D/1} / {*/2,+/2,-/2,0/0,1/0,constant/0,t/0} - Obligation: innermost runtime complexity wrt. defined symbols {D} and constructors {*,+,-,0,1,constant,t} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(constant()) -> c_4() D#(t()) -> c_5() Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(constant()) -> c_4() D#(t()) -> c_5() - Weak TRS: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) D(+(x,y)) -> +(D(x),D(y)) D(-(x,y)) -> -(D(x),D(y)) D(constant()) -> 0() D(t()) -> 1() - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,constant/0,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,constant,t} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {4,5} by application of Pre({4,5}) = {1,2,3}. Here rules are labelled as follows: 1: D#(*(x,y)) -> c_1(D#(x),D#(y)) 2: D#(+(x,y)) -> c_2(D#(x),D#(y)) 3: D#(-(x,y)) -> c_3(D#(x),D#(y)) 4: D#(constant()) -> c_4() 5: D#(t()) -> c_5() * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) - Weak DPs: D#(constant()) -> c_4() D#(t()) -> c_5() - Weak TRS: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) D(+(x,y)) -> +(D(x),D(y)) D(-(x,y)) -> -(D(x),D(y)) D(constant()) -> 0() D(t()) -> 1() - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,constant/0,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,constant,t} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:D#(*(x,y)) -> c_1(D#(x),D#(y)) -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_2 D#(t()) -> c_5():5 -->_1 D#(t()) -> c_5():5 -->_2 D#(constant()) -> c_4():4 -->_1 D#(constant()) -> c_4():4 -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 2:S:D#(+(x,y)) -> c_2(D#(x),D#(y)) -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_2 D#(t()) -> c_5():5 -->_1 D#(t()) -> c_5():5 -->_2 D#(constant()) -> c_4():4 -->_1 D#(constant()) -> c_4():4 -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 3:S:D#(-(x,y)) -> c_3(D#(x),D#(y)) -->_2 D#(t()) -> c_5():5 -->_1 D#(t()) -> c_5():5 -->_2 D#(constant()) -> c_4():4 -->_1 D#(constant()) -> c_4():4 -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 4:W:D#(constant()) -> c_4() 5:W:D#(t()) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: D#(constant()) -> c_4() 5: D#(t()) -> c_5() * Step 4: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) - Weak TRS: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) D(+(x,y)) -> +(D(x),D(y)) D(-(x,y)) -> -(D(x),D(y)) D(constant()) -> 0() D(t()) -> 1() - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,constant/0,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,constant,t} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) * Step 5: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,constant/0,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,constant,t} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_2) = {1,2}, uargs(c_3) = {1,2} Following symbols are considered usable: all TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [0] p(+) = [1] x1 + [1] x2 + [1] p(-) = [1] x1 + [1] x2 + [0] p(0) = [4] p(1) = [1] p(D) = [1] p(constant) = [2] p(t) = [2] p(D#) = [8] x1 + [0] p(c_1) = [1] x1 + [1] x2 + [8] p(c_2) = [1] x1 + [1] x2 + [0] p(c_3) = [1] x1 + [1] x2 + [6] p(c_4) = [8] p(c_5) = [1] Following rules are strictly oriented: D#(+(x,y)) = [8] x + [8] y + [8] > [8] x + [8] y + [0] = c_2(D#(x),D#(y)) Following rules are (at-least) weakly oriented: D#(*(x,y)) = [8] x + [8] y + [0] >= [8] x + [8] y + [8] = c_1(D#(x),D#(y)) D#(-(x,y)) = [8] x + [8] y + [0] >= [8] x + [8] y + [6] = c_3(D#(x),D#(y)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 6: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) - Weak DPs: D#(+(x,y)) -> c_2(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,constant/0,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,constant,t} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_2) = {1,2}, uargs(c_3) = {1,2} Following symbols are considered usable: all TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [0] p(+) = [1] x1 + [1] x2 + [3] p(-) = [1] x1 + [1] x2 + [5] p(0) = [0] p(1) = [0] p(D) = [0] p(constant) = [0] p(t) = [0] p(D#) = [4] x1 + [5] p(c_1) = [1] x1 + [1] x2 + [0] p(c_2) = [1] x1 + [1] x2 + [7] p(c_3) = [1] x1 + [1] x2 + [6] p(c_4) = [8] p(c_5) = [0] Following rules are strictly oriented: D#(-(x,y)) = [4] x + [4] y + [25] > [4] x + [4] y + [16] = c_3(D#(x),D#(y)) Following rules are (at-least) weakly oriented: D#(*(x,y)) = [4] x + [4] y + [5] >= [4] x + [4] y + [10] = c_1(D#(x),D#(y)) D#(+(x,y)) = [4] x + [4] y + [17] >= [4] x + [4] y + [17] = c_2(D#(x),D#(y)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 7: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) - Weak DPs: D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,constant/0,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,constant,t} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_2) = {1,2}, uargs(c_3) = {1,2} Following symbols are considered usable: all TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [10] p(+) = [1] x1 + [1] x2 + [12] p(-) = [1] x1 + [1] x2 + [8] p(0) = [1] p(1) = [0] p(D) = [1] x1 + [8] p(constant) = [0] p(t) = [0] p(D#) = [2] x1 + [3] p(c_1) = [1] x1 + [1] x2 + [15] p(c_2) = [1] x1 + [1] x2 + [1] p(c_3) = [1] x1 + [1] x2 + [13] p(c_4) = [1] p(c_5) = [1] Following rules are strictly oriented: D#(*(x,y)) = [2] x + [2] y + [23] > [2] x + [2] y + [21] = c_1(D#(x),D#(y)) Following rules are (at-least) weakly oriented: D#(+(x,y)) = [2] x + [2] y + [27] >= [2] x + [2] y + [7] = c_2(D#(x),D#(y)) D#(-(x,y)) = [2] x + [2] y + [19] >= [2] x + [2] y + [19] = c_3(D#(x),D#(y)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 8: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,constant/0,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,constant,t} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))