WORST_CASE(?,O(n^3))
* Step 1: DependencyPairs WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            first(0(),X) -> nil()
            first(s(X),cons(Y)) -> cons(Y)
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            terms(N) -> cons(recip(sqr(N)))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1} / {0/0,cons/1,nil/0,recip/1,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add,dbl,first,sqr,terms} and constructors {0,cons,nil
            ,recip,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          add#(0(),X) -> c_1()
          add#(s(X),Y) -> c_2(add#(X,Y))
          dbl#(0()) -> c_3()
          dbl#(s(X)) -> c_4(dbl#(X))
          first#(0(),X) -> c_5()
          first#(s(X),cons(Y)) -> c_6()
          sqr#(0()) -> c_7()
          sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          terms#(N) -> c_9(sqr#(N))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: PredecessorEstimation WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add#(0(),X) -> c_1()
            add#(s(X),Y) -> c_2(add#(X,Y))
            dbl#(0()) -> c_3()
            dbl#(s(X)) -> c_4(dbl#(X))
            first#(0(),X) -> c_5()
            first#(s(X),cons(Y)) -> c_6()
            sqr#(0()) -> c_7()
            sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
            terms#(N) -> c_9(sqr#(N))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            first(0(),X) -> nil()
            first(s(X),cons(Y)) -> cons(Y)
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            terms(N) -> cons(recip(sqr(N)))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/1
            ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/3,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,3,5,6,7}
        by application of
          Pre({1,3,5,6,7}) = {2,4,8,9}.
        Here rules are labelled as follows:
          1: add#(0(),X) -> c_1()
          2: add#(s(X),Y) -> c_2(add#(X,Y))
          3: dbl#(0()) -> c_3()
          4: dbl#(s(X)) -> c_4(dbl#(X))
          5: first#(0(),X) -> c_5()
          6: first#(s(X),cons(Y)) -> c_6()
          7: sqr#(0()) -> c_7()
          8: sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          9: terms#(N) -> c_9(sqr#(N))
* Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
            dbl#(s(X)) -> c_4(dbl#(X))
            sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
            terms#(N) -> c_9(sqr#(N))
        - Weak DPs:
            add#(0(),X) -> c_1()
            dbl#(0()) -> c_3()
            first#(0(),X) -> c_5()
            first#(s(X),cons(Y)) -> c_6()
            sqr#(0()) -> c_7()
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            first(0(),X) -> nil()
            first(s(X),cons(Y)) -> cons(Y)
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            terms(N) -> cons(recip(sqr(N)))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/1
            ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/3,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:add#(s(X),Y) -> c_2(add#(X,Y))
             -->_1 add#(0(),X) -> c_1():5
             -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1
          
          2:S:dbl#(s(X)) -> c_4(dbl#(X))
             -->_1 dbl#(0()) -> c_3():6
             -->_1 dbl#(s(X)) -> c_4(dbl#(X)):2
          
          3:S:sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
             -->_2 sqr#(0()) -> c_7():9
             -->_3 dbl#(0()) -> c_3():6
             -->_1 add#(0(),X) -> c_1():5
             -->_2 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):3
             -->_3 dbl#(s(X)) -> c_4(dbl#(X)):2
             -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1
          
          4:S:terms#(N) -> c_9(sqr#(N))
             -->_1 sqr#(0()) -> c_7():9
             -->_1 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):3
          
          5:W:add#(0(),X) -> c_1()
             
          
          6:W:dbl#(0()) -> c_3()
             
          
          7:W:first#(0(),X) -> c_5()
             
          
          8:W:first#(s(X),cons(Y)) -> c_6()
             
          
          9:W:sqr#(0()) -> c_7()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          8: first#(s(X),cons(Y)) -> c_6()
          7: first#(0(),X) -> c_5()
          9: sqr#(0()) -> c_7()
          6: dbl#(0()) -> c_3()
          5: add#(0(),X) -> c_1()
* Step 4: RemoveHeads WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
            dbl#(s(X)) -> c_4(dbl#(X))
            sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
            terms#(N) -> c_9(sqr#(N))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            first(0(),X) -> nil()
            first(s(X),cons(Y)) -> cons(Y)
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            terms(N) -> cons(recip(sqr(N)))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/1
            ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/3,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:add#(s(X),Y) -> c_2(add#(X,Y))
           -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1
        
        2:S:dbl#(s(X)) -> c_4(dbl#(X))
           -->_1 dbl#(s(X)) -> c_4(dbl#(X)):2
        
        3:S:sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
           -->_2 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):3
           -->_3 dbl#(s(X)) -> c_4(dbl#(X)):2
           -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1
        
        4:S:terms#(N) -> c_9(sqr#(N))
           -->_1 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):3
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(4,terms#(N) -> c_9(sqr#(N)))]
* Step 5: UsableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
            dbl#(s(X)) -> c_4(dbl#(X))
            sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            first(0(),X) -> nil()
            first(s(X),cons(Y)) -> cons(Y)
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            terms(N) -> cons(recip(sqr(N)))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/1
            ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/3,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          add(0(),X) -> X
          add(s(X),Y) -> s(add(X,Y))
          dbl(0()) -> 0()
          dbl(s(X)) -> s(s(dbl(X)))
          sqr(0()) -> 0()
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
          add#(s(X),Y) -> c_2(add#(X,Y))
          dbl#(s(X)) -> c_4(dbl#(X))
          sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
* Step 6: DecomposeDG WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
            dbl#(s(X)) -> c_4(dbl#(X))
            sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/1
            ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/3,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        and a lower component
          add#(s(X),Y) -> c_2(add#(X,Y))
          dbl#(s(X)) -> c_4(dbl#(X))
        Further, following extension rules are added to the lower component.
          sqr#(s(X)) -> add#(sqr(X),dbl(X))
          sqr#(s(X)) -> dbl#(X)
          sqr#(s(X)) -> sqr#(X)
** Step 6.a:1: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/1
            ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/3,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
             -->_2 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          sqr#(s(X)) -> c_8(sqr#(X))
** Step 6.a:2: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            sqr#(s(X)) -> c_8(sqr#(X))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/1
            ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/1,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          sqr#(s(X)) -> c_8(sqr#(X))
** Step 6.a:3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            sqr#(s(X)) -> c_8(sqr#(X))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/1
            ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/1,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_8) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                 p(0) = [2]         
               p(add) = [0]         
              p(cons) = [1] x1 + [0]
               p(dbl) = [0]         
             p(first) = [0]         
               p(nil) = [0]         
             p(recip) = [1] x1 + [0]
                 p(s) = [1] x1 + [3]
               p(sqr) = [0]         
             p(terms) = [0]         
              p(add#) = [0]         
              p(dbl#) = [0]         
            p(first#) = [0]         
              p(sqr#) = [9] x1 + [0]
            p(terms#) = [0]         
               p(c_1) = [0]         
               p(c_2) = [0]         
               p(c_3) = [0]         
               p(c_4) = [0]         
               p(c_5) = [0]         
               p(c_6) = [0]         
               p(c_7) = [0]         
               p(c_8) = [1] x1 + [0]
               p(c_9) = [0]         
          
          Following rules are strictly oriented:
          sqr#(s(X)) = [9] X + [27]
                     > [9] X + [0] 
                     = c_8(sqr#(X))
          
          
          Following rules are (at-least) weakly oriented:
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 6.a:4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            sqr#(s(X)) -> c_8(sqr#(X))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/1
            ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/1,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

** Step 6.b:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
            dbl#(s(X)) -> c_4(dbl#(X))
        - Weak DPs:
            sqr#(s(X)) -> add#(sqr(X),dbl(X))
            sqr#(s(X)) -> dbl#(X)
            sqr#(s(X)) -> sqr#(X)
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/1
            ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/3,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_4) = {1}
        
        Following symbols are considered usable:
          {add#,dbl#,first#,sqr#,terms#}
        TcT has computed the following interpretation:
               p(0) = [2]                  
             p(add) = [2] x2 + [6]         
            p(cons) = [1] x1 + [0]         
             p(dbl) = [4] x1 + [4]         
           p(first) = [1] x1 + [1] x2 + [0]
             p(nil) = [1]                  
           p(recip) = [0]                  
               p(s) = [1] x1 + [2]         
             p(sqr) = [2] x1 + [0]         
           p(terms) = [8] x1 + [1]         
            p(add#) = [0]                  
            p(dbl#) = [1] x1 + [14]        
          p(first#) = [1] x2 + [1]         
            p(sqr#) = [4] x1 + [6]         
          p(terms#) = [1] x1 + [1]         
             p(c_1) = [1]                  
             p(c_2) = [1] x1 + [0]         
             p(c_3) = [1]                  
             p(c_4) = [1] x1 + [0]         
             p(c_5) = [8]                  
             p(c_6) = [0]                  
             p(c_7) = [0]                  
             p(c_8) = [4] x1 + [4] x3 + [2]
             p(c_9) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
        dbl#(s(X)) = [1] X + [16]
                   > [1] X + [14]
                   = c_4(dbl#(X))
        
        
        Following rules are (at-least) weakly oriented:
        add#(s(X),Y) =  [0]                
                     >= [0]                
                     =  c_2(add#(X,Y))     
        
          sqr#(s(X)) =  [4] X + [14]       
                     >= [0]                
                     =  add#(sqr(X),dbl(X))
        
          sqr#(s(X)) =  [4] X + [14]       
                     >= [1] X + [14]       
                     =  dbl#(X)            
        
          sqr#(s(X)) =  [4] X + [14]       
                     >= [4] X + [6]        
                     =  sqr#(X)            
        
** Step 6.b:2: Ara WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
        - Weak DPs:
            dbl#(s(X)) -> c_4(dbl#(X))
            sqr#(s(X)) -> add#(sqr(X),dbl(X))
            sqr#(s(X)) -> dbl#(X)
            sqr#(s(X)) -> sqr#(X)
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/1
            ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/3,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        Ara {araHeuristics = NoHeuristics, minDegree = 2, maxDegree = 2, araTimeout = 8, araRuleShifting = Just 1}
    + Details:
        Signatures used:
        ----------------
          0 :: [] -(0)-> "A"(2, 0)
          0 :: [] -(0)-> "A"(7, 0)
          0 :: [] -(0)-> "A"(0, 15)
          0 :: [] -(0)-> "A"(5, 7)
          0 :: [] -(0)-> "A"(4, 7)
          add :: ["A"(2, 0) x "A"(2, 0)] -(0)-> "A"(2, 0)
          dbl :: ["A"(7, 0)] -(9)-> "A"(2, 0)
          s :: ["A"(2, 0)] -(2)-> "A"(2, 0)
          s :: ["A"(7, 0)] -(7)-> "A"(7, 0)
          s :: ["A"(15, 15)] -(15)-> "A"(0, 15)
          s :: ["A"(9, 0)] -(9)-> "A"(9, 0)
          sqr :: ["A"(0, 15)] -(0)-> "A"(2, 0)
          add# :: ["A"(2, 0) x "A"(0, 0)] -(7)-> "A"(0, 1)
          dbl# :: ["A"(9, 0)] -(8)-> "A"(0, 8)
          sqr# :: ["A"(0, 15)] -(12)-> "A"(0, 1)
          c_2 :: ["A"(0, 0)] -(0)-> "A"(4, 4)
          c_4 :: ["A"(0, 8)] -(0)-> "A"(2, 8)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "0_A" :: [] -(0)-> "A"(1, 0)
          "0_A" :: [] -(0)-> "A"(0, 1)
          "c_2_A" :: ["A"(0)] -(0)-> "A"(1, 0)
          "c_2_A" :: ["A"(0)] -(0)-> "A"(0, 1)
          "c_4_A" :: ["A"(0)] -(0)-> "A"(1, 0)
          "c_4_A" :: ["A"(0)] -(0)-> "A"(0, 1)
          "s_A" :: ["A"(1, 0)] -(1)-> "A"(1, 0)
          "s_A" :: ["A"(1, 1)] -(1)-> "A"(0, 1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          add#(s(X),Y) -> c_2(add#(X,Y))
        2. Weak:
          

WORST_CASE(?,O(n^3))