WORST_CASE(?,O(n^1))
* Step 1: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            compS_f#1(compS_f(x2),x1) -> compS_f#1(x2,S(x1))
            compS_f#1(id(),x3) -> S(x3)
            iter#3(0()) -> id()
            iter#3(S(x6)) -> compS_f(iter#3(x6))
            main(0()) -> 0()
            main(S(x9)) -> compS_f#1(iter#3(x9),0())
        - Signature:
            {compS_f#1/2,iter#3/1,main/1} / {0/0,S/1,compS_f/1,id/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {compS_f#1,iter#3,main} and constructors {0,S,compS_f,id}
    + Applied Processor:
        Ara {araHeuristics = Heuristics, minDegree = 1, maxDegree = 2, araTimeout = 3, araRuleShifting = Nothing}
    + Details:
        Signatures used:
        ----------------
          0 :: [] -(0)-> "A"(2)
          0 :: [] -(0)-> "A"(0)
          S :: ["A"(2)] -(2)-> "A"(2)
          S :: ["A"(0)] -(0)-> "A"(0)
          compS_f :: ["A"(1)] -(1)-> "A"(1)
          compS_f#1 :: ["A"(1) x "A"(0)] -(1)-> "A"(0)
          id :: [] -(0)-> "A"(1)
          iter#3 :: ["A"(2)] -(1)-> "A"(1)
          main :: ["A"(2)] -(1)-> "A"(0)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "0_A" :: [] -(0)-> "A"(0)
          "S_A" :: ["A"(0)] -(0)-> "A"(0)
          "compS_f_A" :: ["A"(0)] -(0)-> "A"(0)
          "id_A" :: [] -(0)-> "A"(0)
        

WORST_CASE(?,O(n^1))