WORST_CASE(?,O(n^1)) * Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: append(l1,l2) -> ifappend(l1,l2,l1) hd(cons(x,l)) -> x ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2)) ifappend(l1,l2,nil()) -> l2 is_empty(cons(x,l)) -> false() is_empty(nil()) -> true() tl(cons(x,l)) -> l - Signature: {append/2,hd/1,ifappend/3,is_empty/1,tl/1} / {cons/2,false/0,nil/0,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {append,hd,ifappend,is_empty,tl} and constructors {cons ,false,nil,true} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs append#(l1,l2) -> c_1(ifappend#(l1,l2,l1)) hd#(cons(x,l)) -> c_2() ifappend#(l1,l2,cons(x,l)) -> c_3(append#(l,l2)) ifappend#(l1,l2,nil()) -> c_4() is_empty#(cons(x,l)) -> c_5() is_empty#(nil()) -> c_6() tl#(cons(x,l)) -> c_7() Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: append#(l1,l2) -> c_1(ifappend#(l1,l2,l1)) hd#(cons(x,l)) -> c_2() ifappend#(l1,l2,cons(x,l)) -> c_3(append#(l,l2)) ifappend#(l1,l2,nil()) -> c_4() is_empty#(cons(x,l)) -> c_5() is_empty#(nil()) -> c_6() tl#(cons(x,l)) -> c_7() - Weak TRS: append(l1,l2) -> ifappend(l1,l2,l1) hd(cons(x,l)) -> x ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2)) ifappend(l1,l2,nil()) -> l2 is_empty(cons(x,l)) -> false() is_empty(nil()) -> true() tl(cons(x,l)) -> l - Signature: {append/2,hd/1,ifappend/3,is_empty/1,tl/1,append#/2,hd#/1,ifappend#/3,is_empty#/1,tl#/1} / {cons/2,false/0 ,nil/0,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,hd#,ifappend#,is_empty# ,tl#} and constructors {cons,false,nil,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,4,5,6,7} by application of Pre({2,4,5,6,7}) = {1}. Here rules are labelled as follows: 1: append#(l1,l2) -> c_1(ifappend#(l1,l2,l1)) 2: hd#(cons(x,l)) -> c_2() 3: ifappend#(l1,l2,cons(x,l)) -> c_3(append#(l,l2)) 4: ifappend#(l1,l2,nil()) -> c_4() 5: is_empty#(cons(x,l)) -> c_5() 6: is_empty#(nil()) -> c_6() 7: tl#(cons(x,l)) -> c_7() * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: append#(l1,l2) -> c_1(ifappend#(l1,l2,l1)) ifappend#(l1,l2,cons(x,l)) -> c_3(append#(l,l2)) - Weak DPs: hd#(cons(x,l)) -> c_2() ifappend#(l1,l2,nil()) -> c_4() is_empty#(cons(x,l)) -> c_5() is_empty#(nil()) -> c_6() tl#(cons(x,l)) -> c_7() - Weak TRS: append(l1,l2) -> ifappend(l1,l2,l1) hd(cons(x,l)) -> x ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2)) ifappend(l1,l2,nil()) -> l2 is_empty(cons(x,l)) -> false() is_empty(nil()) -> true() tl(cons(x,l)) -> l - Signature: {append/2,hd/1,ifappend/3,is_empty/1,tl/1,append#/2,hd#/1,ifappend#/3,is_empty#/1,tl#/1} / {cons/2,false/0 ,nil/0,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,hd#,ifappend#,is_empty# ,tl#} and constructors {cons,false,nil,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:append#(l1,l2) -> c_1(ifappend#(l1,l2,l1)) -->_1 ifappend#(l1,l2,cons(x,l)) -> c_3(append#(l,l2)):2 -->_1 ifappend#(l1,l2,nil()) -> c_4():4 2:S:ifappend#(l1,l2,cons(x,l)) -> c_3(append#(l,l2)) -->_1 append#(l1,l2) -> c_1(ifappend#(l1,l2,l1)):1 3:W:hd#(cons(x,l)) -> c_2() 4:W:ifappend#(l1,l2,nil()) -> c_4() 5:W:is_empty#(cons(x,l)) -> c_5() 6:W:is_empty#(nil()) -> c_6() 7:W:tl#(cons(x,l)) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: tl#(cons(x,l)) -> c_7() 6: is_empty#(nil()) -> c_6() 5: is_empty#(cons(x,l)) -> c_5() 3: hd#(cons(x,l)) -> c_2() 4: ifappend#(l1,l2,nil()) -> c_4() * Step 4: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: append#(l1,l2) -> c_1(ifappend#(l1,l2,l1)) ifappend#(l1,l2,cons(x,l)) -> c_3(append#(l,l2)) - Weak TRS: append(l1,l2) -> ifappend(l1,l2,l1) hd(cons(x,l)) -> x ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2)) ifappend(l1,l2,nil()) -> l2 is_empty(cons(x,l)) -> false() is_empty(nil()) -> true() tl(cons(x,l)) -> l - Signature: {append/2,hd/1,ifappend/3,is_empty/1,tl/1,append#/2,hd#/1,ifappend#/3,is_empty#/1,tl#/1} / {cons/2,false/0 ,nil/0,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,hd#,ifappend#,is_empty# ,tl#} and constructors {cons,false,nil,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: append#(l1,l2) -> c_1(ifappend#(l1,l2,l1)) ifappend#(l1,l2,cons(x,l)) -> c_3(append#(l,l2)) * Step 5: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: append#(l1,l2) -> c_1(ifappend#(l1,l2,l1)) ifappend#(l1,l2,cons(x,l)) -> c_3(append#(l,l2)) - Signature: {append/2,hd/1,ifappend/3,is_empty/1,tl/1,append#/2,hd#/1,ifappend#/3,is_empty#/1,tl#/1} / {cons/2,false/0 ,nil/0,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,hd#,ifappend#,is_empty# ,tl#} and constructors {cons,false,nil,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_3) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(append) = [0] p(cons) = [1] x1 + [1] x2 + [0] p(false) = [0] p(hd) = [0] p(ifappend) = [0] p(is_empty) = [0] p(nil) = [0] p(tl) = [0] p(true) = [0] p(append#) = [0] p(hd#) = [0] p(ifappend#) = [5] p(is_empty#) = [0] p(tl#) = [0] p(c_1) = [1] x1 + [0] p(c_2) = [0] p(c_3) = [1] x1 + [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [0] p(c_7) = [0] Following rules are strictly oriented: ifappend#(l1,l2,cons(x,l)) = [5] > [0] = c_3(append#(l,l2)) Following rules are (at-least) weakly oriented: append#(l1,l2) = [0] >= [5] = c_1(ifappend#(l1,l2,l1)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 6: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: append#(l1,l2) -> c_1(ifappend#(l1,l2,l1)) - Weak DPs: ifappend#(l1,l2,cons(x,l)) -> c_3(append#(l,l2)) - Signature: {append/2,hd/1,ifappend/3,is_empty/1,tl/1,append#/2,hd#/1,ifappend#/3,is_empty#/1,tl#/1} / {cons/2,false/0 ,nil/0,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,hd#,ifappend#,is_empty# ,tl#} and constructors {cons,false,nil,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_3) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(append) = [0] p(cons) = [1] x1 + [1] x2 + [1] p(false) = [0] p(hd) = [0] p(ifappend) = [0] p(is_empty) = [0] p(nil) = [0] p(tl) = [0] p(true) = [0] p(append#) = [1] x1 + [1] p(hd#) = [0] p(ifappend#) = [1] x3 + [0] p(is_empty#) = [0] p(tl#) = [0] p(c_1) = [1] x1 + [0] p(c_2) = [0] p(c_3) = [1] x1 + [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [0] p(c_7) = [0] Following rules are strictly oriented: append#(l1,l2) = [1] l1 + [1] > [1] l1 + [0] = c_1(ifappend#(l1,l2,l1)) Following rules are (at-least) weakly oriented: ifappend#(l1,l2,cons(x,l)) = [1] l + [1] x + [1] >= [1] l + [1] = c_3(append#(l,l2)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 7: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: append#(l1,l2) -> c_1(ifappend#(l1,l2,l1)) ifappend#(l1,l2,cons(x,l)) -> c_3(append#(l,l2)) - Signature: {append/2,hd/1,ifappend/3,is_empty/1,tl/1,append#/2,hd#/1,ifappend#/3,is_empty#/1,tl#/1} / {cons/2,false/0 ,nil/0,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {append#,hd#,ifappend#,is_empty# ,tl#} and constructors {cons,false,nil,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))