WORST_CASE(?,O(n^1)) * Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: even(Cons(x,Nil())) -> False() even(Cons(x',Cons(x,xs))) -> even(xs) even(Nil()) -> True() goal(x,y) -> and(lte(x,y),even(x)) lte(Cons(x,xs),Nil()) -> False() lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs) lte(Nil(),y) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Weak TRS: and(False(),False()) -> False() and(False(),True()) -> False() and(True(),False()) -> False() and(True(),True()) -> True() - Signature: {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {and,even,goal,lte,notEmpty} and constructors {Cons,False ,Nil,True} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs even#(Cons(x,Nil())) -> c_1() even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)) even#(Nil()) -> c_3() goal#(x,y) -> c_4(and#(lte(x,y),even(x)),lte#(x,y),even#(x)) lte#(Cons(x,xs),Nil()) -> c_5() lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)) lte#(Nil(),y) -> c_7() notEmpty#(Cons(x,xs)) -> c_8() notEmpty#(Nil()) -> c_9() Weak DPs and#(False(),False()) -> c_10() and#(False(),True()) -> c_11() and#(True(),False()) -> c_12() and#(True(),True()) -> c_13() and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: even#(Cons(x,Nil())) -> c_1() even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)) even#(Nil()) -> c_3() goal#(x,y) -> c_4(and#(lte(x,y),even(x)),lte#(x,y),even#(x)) lte#(Cons(x,xs),Nil()) -> c_5() lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)) lte#(Nil(),y) -> c_7() notEmpty#(Cons(x,xs)) -> c_8() notEmpty#(Nil()) -> c_9() - Weak DPs: and#(False(),False()) -> c_10() and#(False(),True()) -> c_11() and#(True(),False()) -> c_12() and#(True(),True()) -> c_13() - Weak TRS: and(False(),False()) -> False() and(False(),True()) -> False() and(True(),False()) -> False() and(True(),True()) -> True() even(Cons(x,Nil())) -> False() even(Cons(x',Cons(x,xs))) -> even(xs) even(Nil()) -> True() goal(x,y) -> and(lte(x,y),even(x)) lte(Cons(x,xs),Nil()) -> False() lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs) lte(Nil(),y) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {and/2,even/1,goal/2,lte/2,notEmpty/1,and#/2,even#/1,goal#/2,lte#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0 ,True/0,c_1/0,c_2/1,c_3/0,c_4/3,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {and#,even#,goal#,lte#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,5,7,8,9} by application of Pre({1,3,5,7,8,9}) = {2,4,6}. Here rules are labelled as follows: 1: even#(Cons(x,Nil())) -> c_1() 2: even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)) 3: even#(Nil()) -> c_3() 4: goal#(x,y) -> c_4(and#(lte(x,y),even(x)),lte#(x,y),even#(x)) 5: lte#(Cons(x,xs),Nil()) -> c_5() 6: lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)) 7: lte#(Nil(),y) -> c_7() 8: notEmpty#(Cons(x,xs)) -> c_8() 9: notEmpty#(Nil()) -> c_9() 10: and#(False(),False()) -> c_10() 11: and#(False(),True()) -> c_11() 12: and#(True(),False()) -> c_12() 13: and#(True(),True()) -> c_13() * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)) goal#(x,y) -> c_4(and#(lte(x,y),even(x)),lte#(x,y),even#(x)) lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)) - Weak DPs: and#(False(),False()) -> c_10() and#(False(),True()) -> c_11() and#(True(),False()) -> c_12() and#(True(),True()) -> c_13() even#(Cons(x,Nil())) -> c_1() even#(Nil()) -> c_3() lte#(Cons(x,xs),Nil()) -> c_5() lte#(Nil(),y) -> c_7() notEmpty#(Cons(x,xs)) -> c_8() notEmpty#(Nil()) -> c_9() - Weak TRS: and(False(),False()) -> False() and(False(),True()) -> False() and(True(),False()) -> False() and(True(),True()) -> True() even(Cons(x,Nil())) -> False() even(Cons(x',Cons(x,xs))) -> even(xs) even(Nil()) -> True() goal(x,y) -> and(lte(x,y),even(x)) lte(Cons(x,xs),Nil()) -> False() lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs) lte(Nil(),y) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {and/2,even/1,goal/2,lte/2,notEmpty/1,and#/2,even#/1,goal#/2,lte#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0 ,True/0,c_1/0,c_2/1,c_3/0,c_4/3,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {and#,even#,goal#,lte#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)) -->_1 even#(Nil()) -> c_3():9 -->_1 even#(Cons(x,Nil())) -> c_1():8 -->_1 even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)):1 2:S:goal#(x,y) -> c_4(and#(lte(x,y),even(x)),lte#(x,y),even#(x)) -->_2 lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)):3 -->_2 lte#(Nil(),y) -> c_7():11 -->_2 lte#(Cons(x,xs),Nil()) -> c_5():10 -->_3 even#(Nil()) -> c_3():9 -->_3 even#(Cons(x,Nil())) -> c_1():8 -->_1 and#(True(),True()) -> c_13():7 -->_1 and#(True(),False()) -> c_12():6 -->_1 and#(False(),True()) -> c_11():5 -->_1 and#(False(),False()) -> c_10():4 -->_3 even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)):1 3:S:lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)) -->_1 lte#(Nil(),y) -> c_7():11 -->_1 lte#(Cons(x,xs),Nil()) -> c_5():10 -->_1 lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)):3 4:W:and#(False(),False()) -> c_10() 5:W:and#(False(),True()) -> c_11() 6:W:and#(True(),False()) -> c_12() 7:W:and#(True(),True()) -> c_13() 8:W:even#(Cons(x,Nil())) -> c_1() 9:W:even#(Nil()) -> c_3() 10:W:lte#(Cons(x,xs),Nil()) -> c_5() 11:W:lte#(Nil(),y) -> c_7() 12:W:notEmpty#(Cons(x,xs)) -> c_8() 13:W:notEmpty#(Nil()) -> c_9() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 13: notEmpty#(Nil()) -> c_9() 12: notEmpty#(Cons(x,xs)) -> c_8() 4: and#(False(),False()) -> c_10() 5: and#(False(),True()) -> c_11() 6: and#(True(),False()) -> c_12() 7: and#(True(),True()) -> c_13() 10: lte#(Cons(x,xs),Nil()) -> c_5() 11: lte#(Nil(),y) -> c_7() 8: even#(Cons(x,Nil())) -> c_1() 9: even#(Nil()) -> c_3() * Step 4: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)) goal#(x,y) -> c_4(and#(lte(x,y),even(x)),lte#(x,y),even#(x)) lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)) - Weak TRS: and(False(),False()) -> False() and(False(),True()) -> False() and(True(),False()) -> False() and(True(),True()) -> True() even(Cons(x,Nil())) -> False() even(Cons(x',Cons(x,xs))) -> even(xs) even(Nil()) -> True() goal(x,y) -> and(lte(x,y),even(x)) lte(Cons(x,xs),Nil()) -> False() lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs) lte(Nil(),y) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {and/2,even/1,goal/2,lte/2,notEmpty/1,and#/2,even#/1,goal#/2,lte#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0 ,True/0,c_1/0,c_2/1,c_3/0,c_4/3,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {and#,even#,goal#,lte#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)) -->_1 even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)):1 2:S:goal#(x,y) -> c_4(and#(lte(x,y),even(x)),lte#(x,y),even#(x)) -->_2 lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)):3 -->_3 even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)):1 3:S:lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)) -->_1 lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)):3 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: goal#(x,y) -> c_4(lte#(x,y),even#(x)) * Step 5: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)) goal#(x,y) -> c_4(lte#(x,y),even#(x)) lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)) - Weak TRS: and(False(),False()) -> False() and(False(),True()) -> False() and(True(),False()) -> False() and(True(),True()) -> True() even(Cons(x,Nil())) -> False() even(Cons(x',Cons(x,xs))) -> even(xs) even(Nil()) -> True() goal(x,y) -> and(lte(x,y),even(x)) lte(Cons(x,xs),Nil()) -> False() lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs) lte(Nil(),y) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {and/2,even/1,goal/2,lte/2,notEmpty/1,and#/2,even#/1,goal#/2,lte#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0 ,True/0,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {and#,even#,goal#,lte#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)) goal#(x,y) -> c_4(lte#(x,y),even#(x)) lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)) * Step 6: RemoveHeads WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)) goal#(x,y) -> c_4(lte#(x,y),even#(x)) lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)) - Signature: {and/2,even/1,goal/2,lte/2,notEmpty/1,and#/2,even#/1,goal#/2,lte#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0 ,True/0,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {and#,even#,goal#,lte#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)) -->_1 even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)):1 2:S:goal#(x,y) -> c_4(lte#(x,y),even#(x)) -->_1 lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)):3 -->_2 even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)):1 3:S:lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)) -->_1 lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)):3 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,goal#(x,y) -> c_4(lte#(x,y),even#(x)))] * Step 7: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)) lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)) - Signature: {and/2,even/1,goal/2,lte/2,notEmpty/1,and#/2,even#/1,goal#/2,lte#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0 ,True/0,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {and#,even#,goal#,lte#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [3] p(False) = [0] p(Nil) = [0] p(True) = [0] p(and) = [0] p(even) = [0] p(goal) = [0] p(lte) = [0] p(notEmpty) = [0] p(and#) = [0] p(even#) = [13] p(goal#) = [0] p(lte#) = [5] x1 + [0] p(notEmpty#) = [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [1] x1 + [0] p(c_7) = [0] p(c_8) = [0] p(c_9) = [0] p(c_10) = [0] p(c_11) = [0] p(c_12) = [0] p(c_13) = [0] Following rules are strictly oriented: lte#(Cons(x',xs'),Cons(x,xs)) = [5] x' + [5] xs' + [15] > [5] xs' + [0] = c_6(lte#(xs',xs)) Following rules are (at-least) weakly oriented: even#(Cons(x',Cons(x,xs))) = [13] >= [13] = c_2(even#(xs)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 8: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)) - Weak DPs: lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)) - Signature: {and/2,even/1,goal/2,lte/2,notEmpty/1,and#/2,even#/1,goal#/2,lte#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0 ,True/0,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {and#,even#,goal#,lte#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [4] p(False) = [0] p(Nil) = [0] p(True) = [0] p(and) = [0] p(even) = [0] p(goal) = [2] x1 + [0] p(lte) = [1] x2 + [1] p(notEmpty) = [1] x1 + [1] p(and#) = [1] x1 + [0] p(even#) = [2] x1 + [9] p(goal#) = [1] x2 + [1] p(lte#) = [0] p(notEmpty#) = [2] x1 + [1] p(c_1) = [1] p(c_2) = [1] x1 + [7] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] p(c_6) = [1] x1 + [0] p(c_7) = [0] p(c_8) = [1] p(c_9) = [8] p(c_10) = [8] p(c_11) = [1] p(c_12) = [2] p(c_13) = [0] Following rules are strictly oriented: even#(Cons(x',Cons(x,xs))) = [2] x + [2] x' + [2] xs + [25] > [2] xs + [16] = c_2(even#(xs)) Following rules are (at-least) weakly oriented: lte#(Cons(x',xs'),Cons(x,xs)) = [0] >= [0] = c_6(lte#(xs',xs)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 9: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: even#(Cons(x',Cons(x,xs))) -> c_2(even#(xs)) lte#(Cons(x',xs'),Cons(x,xs)) -> c_6(lte#(xs',xs)) - Signature: {and/2,even/1,goal/2,lte/2,notEmpty/1,and#/2,even#/1,goal#/2,lte#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0 ,True/0,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {and#,even#,goal#,lte#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))