WORST_CASE(?,O(n^1)) * Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: +Full(0(),y) -> y +Full(S(x),y) -> +Full(x,S(y)) f(x) -> *(x,x) goal(xs) -> map(xs) map(Cons(x,xs)) -> Cons(f(x),map(xs)) map(Nil()) -> Nil() - Weak TRS: *(x,0()) -> 0() *(x,S(0())) -> x *(x,S(S(y))) -> +(x,*(x,S(y))) *(0(),y) -> 0() - Signature: {*/2,+Full/2,f/1,goal/1,map/1} / {+/2,0/0,Cons/2,Nil/0,S/1} - Obligation: innermost runtime complexity wrt. defined symbols {*,+Full,f,goal,map} and constructors {+,0,Cons,Nil,S} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs +Full#(0(),y) -> c_1() +Full#(S(x),y) -> c_2(+Full#(x,S(y))) f#(x) -> c_3(*#(x,x)) goal#(xs) -> c_4(map#(xs)) map#(Cons(x,xs)) -> c_5(f#(x),map#(xs)) map#(Nil()) -> c_6() Weak DPs *#(x,0()) -> c_7() *#(x,S(0())) -> c_8() *#(x,S(S(y))) -> c_9(*#(x,S(y))) *#(0(),y) -> c_10() and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: +Full#(0(),y) -> c_1() +Full#(S(x),y) -> c_2(+Full#(x,S(y))) f#(x) -> c_3(*#(x,x)) goal#(xs) -> c_4(map#(xs)) map#(Cons(x,xs)) -> c_5(f#(x),map#(xs)) map#(Nil()) -> c_6() - Weak DPs: *#(x,0()) -> c_7() *#(x,S(0())) -> c_8() *#(x,S(S(y))) -> c_9(*#(x,S(y))) *#(0(),y) -> c_10() - Weak TRS: *(x,0()) -> 0() *(x,S(0())) -> x *(x,S(S(y))) -> +(x,*(x,S(y))) *(0(),y) -> 0() +Full(0(),y) -> y +Full(S(x),y) -> +Full(x,S(y)) f(x) -> *(x,x) goal(xs) -> map(xs) map(Cons(x,xs)) -> Cons(f(x),map(xs)) map(Nil()) -> Nil() - Signature: {*/2,+Full/2,f/1,goal/1,map/1,*#/2,+Full#/2,f#/1,goal#/1,map#/1} / {+/2,0/0,Cons/2,Nil/0,S/1,c_1/0,c_2/1 ,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {*#,+Full#,f#,goal#,map#} and constructors {+,0,Cons,Nil ,S} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,6} by application of Pre({1,3,6}) = {2,4,5}. Here rules are labelled as follows: 1: +Full#(0(),y) -> c_1() 2: +Full#(S(x),y) -> c_2(+Full#(x,S(y))) 3: f#(x) -> c_3(*#(x,x)) 4: goal#(xs) -> c_4(map#(xs)) 5: map#(Cons(x,xs)) -> c_5(f#(x),map#(xs)) 6: map#(Nil()) -> c_6() 7: *#(x,0()) -> c_7() 8: *#(x,S(0())) -> c_8() 9: *#(x,S(S(y))) -> c_9(*#(x,S(y))) 10: *#(0(),y) -> c_10() * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: +Full#(S(x),y) -> c_2(+Full#(x,S(y))) goal#(xs) -> c_4(map#(xs)) map#(Cons(x,xs)) -> c_5(f#(x),map#(xs)) - Weak DPs: *#(x,0()) -> c_7() *#(x,S(0())) -> c_8() *#(x,S(S(y))) -> c_9(*#(x,S(y))) *#(0(),y) -> c_10() +Full#(0(),y) -> c_1() f#(x) -> c_3(*#(x,x)) map#(Nil()) -> c_6() - Weak TRS: *(x,0()) -> 0() *(x,S(0())) -> x *(x,S(S(y))) -> +(x,*(x,S(y))) *(0(),y) -> 0() +Full(0(),y) -> y +Full(S(x),y) -> +Full(x,S(y)) f(x) -> *(x,x) goal(xs) -> map(xs) map(Cons(x,xs)) -> Cons(f(x),map(xs)) map(Nil()) -> Nil() - Signature: {*/2,+Full/2,f/1,goal/1,map/1,*#/2,+Full#/2,f#/1,goal#/1,map#/1} / {+/2,0/0,Cons/2,Nil/0,S/1,c_1/0,c_2/1 ,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {*#,+Full#,f#,goal#,map#} and constructors {+,0,Cons,Nil ,S} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:+Full#(S(x),y) -> c_2(+Full#(x,S(y))) -->_1 +Full#(0(),y) -> c_1():8 -->_1 +Full#(S(x),y) -> c_2(+Full#(x,S(y))):1 2:S:goal#(xs) -> c_4(map#(xs)) -->_1 map#(Cons(x,xs)) -> c_5(f#(x),map#(xs)):3 -->_1 map#(Nil()) -> c_6():10 3:S:map#(Cons(x,xs)) -> c_5(f#(x),map#(xs)) -->_1 f#(x) -> c_3(*#(x,x)):9 -->_2 map#(Nil()) -> c_6():10 -->_2 map#(Cons(x,xs)) -> c_5(f#(x),map#(xs)):3 4:W:*#(x,0()) -> c_7() 5:W:*#(x,S(0())) -> c_8() 6:W:*#(x,S(S(y))) -> c_9(*#(x,S(y))) -->_1 *#(0(),y) -> c_10():7 -->_1 *#(x,S(S(y))) -> c_9(*#(x,S(y))):6 -->_1 *#(x,S(0())) -> c_8():5 7:W:*#(0(),y) -> c_10() 8:W:+Full#(0(),y) -> c_1() 9:W:f#(x) -> c_3(*#(x,x)) -->_1 *#(0(),y) -> c_10():7 -->_1 *#(x,S(S(y))) -> c_9(*#(x,S(y))):6 -->_1 *#(x,S(0())) -> c_8():5 -->_1 *#(x,0()) -> c_7():4 10:W:map#(Nil()) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 10: map#(Nil()) -> c_6() 9: f#(x) -> c_3(*#(x,x)) 4: *#(x,0()) -> c_7() 6: *#(x,S(S(y))) -> c_9(*#(x,S(y))) 5: *#(x,S(0())) -> c_8() 7: *#(0(),y) -> c_10() 8: +Full#(0(),y) -> c_1() * Step 4: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: +Full#(S(x),y) -> c_2(+Full#(x,S(y))) goal#(xs) -> c_4(map#(xs)) map#(Cons(x,xs)) -> c_5(f#(x),map#(xs)) - Weak TRS: *(x,0()) -> 0() *(x,S(0())) -> x *(x,S(S(y))) -> +(x,*(x,S(y))) *(0(),y) -> 0() +Full(0(),y) -> y +Full(S(x),y) -> +Full(x,S(y)) f(x) -> *(x,x) goal(xs) -> map(xs) map(Cons(x,xs)) -> Cons(f(x),map(xs)) map(Nil()) -> Nil() - Signature: {*/2,+Full/2,f/1,goal/1,map/1,*#/2,+Full#/2,f#/1,goal#/1,map#/1} / {+/2,0/0,Cons/2,Nil/0,S/1,c_1/0,c_2/1 ,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {*#,+Full#,f#,goal#,map#} and constructors {+,0,Cons,Nil ,S} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:+Full#(S(x),y) -> c_2(+Full#(x,S(y))) -->_1 +Full#(S(x),y) -> c_2(+Full#(x,S(y))):1 2:S:goal#(xs) -> c_4(map#(xs)) -->_1 map#(Cons(x,xs)) -> c_5(f#(x),map#(xs)):3 3:S:map#(Cons(x,xs)) -> c_5(f#(x),map#(xs)) -->_2 map#(Cons(x,xs)) -> c_5(f#(x),map#(xs)):3 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: map#(Cons(x,xs)) -> c_5(map#(xs)) * Step 5: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: +Full#(S(x),y) -> c_2(+Full#(x,S(y))) goal#(xs) -> c_4(map#(xs)) map#(Cons(x,xs)) -> c_5(map#(xs)) - Weak TRS: *(x,0()) -> 0() *(x,S(0())) -> x *(x,S(S(y))) -> +(x,*(x,S(y))) *(0(),y) -> 0() +Full(0(),y) -> y +Full(S(x),y) -> +Full(x,S(y)) f(x) -> *(x,x) goal(xs) -> map(xs) map(Cons(x,xs)) -> Cons(f(x),map(xs)) map(Nil()) -> Nil() - Signature: {*/2,+Full/2,f/1,goal/1,map/1,*#/2,+Full#/2,f#/1,goal#/1,map#/1} / {+/2,0/0,Cons/2,Nil/0,S/1,c_1/0,c_2/1 ,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {*#,+Full#,f#,goal#,map#} and constructors {+,0,Cons,Nil ,S} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: +Full#(S(x),y) -> c_2(+Full#(x,S(y))) goal#(xs) -> c_4(map#(xs)) map#(Cons(x,xs)) -> c_5(map#(xs)) * Step 6: RemoveHeads WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: +Full#(S(x),y) -> c_2(+Full#(x,S(y))) goal#(xs) -> c_4(map#(xs)) map#(Cons(x,xs)) -> c_5(map#(xs)) - Signature: {*/2,+Full/2,f/1,goal/1,map/1,*#/2,+Full#/2,f#/1,goal#/1,map#/1} / {+/2,0/0,Cons/2,Nil/0,S/1,c_1/0,c_2/1 ,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {*#,+Full#,f#,goal#,map#} and constructors {+,0,Cons,Nil ,S} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:+Full#(S(x),y) -> c_2(+Full#(x,S(y))) -->_1 +Full#(S(x),y) -> c_2(+Full#(x,S(y))):1 2:S:goal#(xs) -> c_4(map#(xs)) -->_1 map#(Cons(x,xs)) -> c_5(map#(xs)):3 3:S:map#(Cons(x,xs)) -> c_5(map#(xs)) -->_1 map#(Cons(x,xs)) -> c_5(map#(xs)):3 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,goal#(xs) -> c_4(map#(xs)))] * Step 7: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: +Full#(S(x),y) -> c_2(+Full#(x,S(y))) map#(Cons(x,xs)) -> c_5(map#(xs)) - Signature: {*/2,+Full/2,f/1,goal/1,map/1,*#/2,+Full#/2,f#/1,goal#/1,map#/1} / {+/2,0/0,Cons/2,Nil/0,S/1,c_1/0,c_2/1 ,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {*#,+Full#,f#,goal#,map#} and constructors {+,0,Cons,Nil ,S} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_5) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(*) = [0] p(+) = [1] x1 + [1] x2 + [0] p(+Full) = [0] p(0) = [0] p(Cons) = [1] x1 + [1] x2 + [1] p(Nil) = [0] p(S) = [1] x1 + [0] p(f) = [0] p(goal) = [0] p(map) = [0] p(*#) = [0] p(+Full#) = [0] p(f#) = [0] p(goal#) = [0] p(map#) = [9] x1 + [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [1] x1 + [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [0] p(c_9) = [0] p(c_10) = [0] Following rules are strictly oriented: map#(Cons(x,xs)) = [9] x + [9] xs + [9] > [9] xs + [0] = c_5(map#(xs)) Following rules are (at-least) weakly oriented: +Full#(S(x),y) = [0] >= [0] = c_2(+Full#(x,S(y))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 8: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: +Full#(S(x),y) -> c_2(+Full#(x,S(y))) - Weak DPs: map#(Cons(x,xs)) -> c_5(map#(xs)) - Signature: {*/2,+Full/2,f/1,goal/1,map/1,*#/2,+Full#/2,f#/1,goal#/1,map#/1} / {+/2,0/0,Cons/2,Nil/0,S/1,c_1/0,c_2/1 ,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {*#,+Full#,f#,goal#,map#} and constructors {+,0,Cons,Nil ,S} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_5) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(*) = [0] p(+) = [1] x1 + [1] x2 + [0] p(+Full) = [0] p(0) = [1] p(Cons) = [1] x1 + [1] x2 + [0] p(Nil) = [0] p(S) = [1] x1 + [3] p(f) = [0] p(goal) = [0] p(map) = [0] p(*#) = [0] p(+Full#) = [9] x1 + [0] p(f#) = [0] p(goal#) = [0] p(map#) = [2] x1 + [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [1] x1 + [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [0] p(c_9) = [0] p(c_10) = [0] Following rules are strictly oriented: +Full#(S(x),y) = [9] x + [27] > [9] x + [0] = c_2(+Full#(x,S(y))) Following rules are (at-least) weakly oriented: map#(Cons(x,xs)) = [2] x + [2] xs + [0] >= [2] xs + [0] = c_5(map#(xs)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 9: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: +Full#(S(x),y) -> c_2(+Full#(x,S(y))) map#(Cons(x,xs)) -> c_5(map#(xs)) - Signature: {*/2,+Full/2,f/1,goal/1,map/1,*#/2,+Full#/2,f#/1,goal#/1,map#/1} / {+/2,0/0,Cons/2,Nil/0,S/1,c_1/0,c_2/1 ,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {*#,+Full#,f#,goal#,map#} and constructors {+,0,Cons,Nil ,S} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))