WORST_CASE(?,O(n^2)) * Step 1: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) - Signature: {+/2,sum/1} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {+,sum} and constructors {0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs +#(x,0()) -> c_1() +#(x,s(y)) -> c_2(+#(x,y)) sum#(0()) -> c_3() sum#(s(x)) -> c_4(+#(sum(x),s(x)),sum#(x)) Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: +#(x,0()) -> c_1() +#(x,s(y)) -> c_2(+#(x,y)) sum#(0()) -> c_3() sum#(s(x)) -> c_4(+#(sum(x),s(x)),sum#(x)) - Weak TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) - Signature: {+/2,sum/1,+#/2,sum#/1} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {+#,sum#} and constructors {0,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3} by application of Pre({1,3}) = {2,4}. Here rules are labelled as follows: 1: +#(x,0()) -> c_1() 2: +#(x,s(y)) -> c_2(+#(x,y)) 3: sum#(0()) -> c_3() 4: sum#(s(x)) -> c_4(+#(sum(x),s(x)),sum#(x)) * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: +#(x,s(y)) -> c_2(+#(x,y)) sum#(s(x)) -> c_4(+#(sum(x),s(x)),sum#(x)) - Weak DPs: +#(x,0()) -> c_1() sum#(0()) -> c_3() - Weak TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) - Signature: {+/2,sum/1,+#/2,sum#/1} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {+#,sum#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:+#(x,s(y)) -> c_2(+#(x,y)) -->_1 +#(x,0()) -> c_1():3 -->_1 +#(x,s(y)) -> c_2(+#(x,y)):1 2:S:sum#(s(x)) -> c_4(+#(sum(x),s(x)),sum#(x)) -->_2 sum#(0()) -> c_3():4 -->_2 sum#(s(x)) -> c_4(+#(sum(x),s(x)),sum#(x)):2 -->_1 +#(x,s(y)) -> c_2(+#(x,y)):1 3:W:+#(x,0()) -> c_1() 4:W:sum#(0()) -> c_3() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: sum#(0()) -> c_3() 3: +#(x,0()) -> c_1() * Step 4: DecomposeDG WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: +#(x,s(y)) -> c_2(+#(x,y)) sum#(s(x)) -> c_4(+#(sum(x),s(x)),sum#(x)) - Weak TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) - Signature: {+/2,sum/1,+#/2,sum#/1} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {+#,sum#} and constructors {0,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component sum#(s(x)) -> c_4(+#(sum(x),s(x)),sum#(x)) and a lower component +#(x,s(y)) -> c_2(+#(x,y)) Further, following extension rules are added to the lower component. sum#(s(x)) -> +#(sum(x),s(x)) sum#(s(x)) -> sum#(x) ** Step 4.a:1: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_4(+#(sum(x),s(x)),sum#(x)) - Weak TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) - Signature: {+/2,sum/1,+#/2,sum#/1} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {+#,sum#} and constructors {0,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:sum#(s(x)) -> c_4(+#(sum(x),s(x)),sum#(x)) -->_2 sum#(s(x)) -> c_4(+#(sum(x),s(x)),sum#(x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: sum#(s(x)) -> c_4(sum#(x)) ** Step 4.a:2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_4(sum#(x)) - Weak TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) - Signature: {+/2,sum/1,+#/2,sum#/1} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {+#,sum#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: sum#(s(x)) -> c_4(sum#(x)) ** Step 4.a:3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_4(sum#(x)) - Signature: {+/2,sum/1,+#/2,sum#/1} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {+#,sum#} and constructors {0,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(+) = [0] p(0) = [0] p(s) = [1] x1 + [6] p(sum) = [1] x1 + [1] p(+#) = [2] x2 + [1] p(sum#) = [3] x1 + [13] p(c_1) = [1] p(c_2) = [1] p(c_3) = [0] p(c_4) = [1] x1 + [1] Following rules are strictly oriented: sum#(s(x)) = [3] x + [31] > [3] x + [14] = c_4(sum#(x)) Following rules are (at-least) weakly oriented: Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 4.a:4: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: sum#(s(x)) -> c_4(sum#(x)) - Signature: {+/2,sum/1,+#/2,sum#/1} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {+#,sum#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 4.b:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: +#(x,s(y)) -> c_2(+#(x,y)) - Weak DPs: sum#(s(x)) -> +#(sum(x),s(x)) sum#(s(x)) -> sum#(x) - Weak TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) - Signature: {+/2,sum/1,+#/2,sum#/1} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {+#,sum#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1} Following symbols are considered usable: {+#,sum#} TcT has computed the following interpretation: p(+) = [8] x1 + [1] x2 + [4] p(0) = [0] p(s) = [1] x1 + [4] p(sum) = [2] x1 + [1] p(+#) = [1] x2 + [0] p(sum#) = [1] x1 + [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [2] p(c_4) = [1] Following rules are strictly oriented: +#(x,s(y)) = [1] y + [4] > [1] y + [0] = c_2(+#(x,y)) Following rules are (at-least) weakly oriented: sum#(s(x)) = [1] x + [4] >= [1] x + [4] = +#(sum(x),s(x)) sum#(s(x)) = [1] x + [4] >= [1] x + [0] = sum#(x) ** Step 4.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: +#(x,s(y)) -> c_2(+#(x,y)) sum#(s(x)) -> +#(sum(x),s(x)) sum#(s(x)) -> sum#(x) - Weak TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) - Signature: {+/2,sum/1,+#/2,sum#/1} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {+#,sum#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))