WORST_CASE(?,O(n^1)) * Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1} / {*/2,+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {sqr,sum} and constructors {*,+,0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs sqr#(x) -> c_1() sum#(0()) -> c_2() sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)) Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sqr#(x) -> c_1() sum#(0()) -> c_2() sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)) - Weak TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1,sqr#/1,sum#/1} / {*/2,+/2,0/0,s/1,c_1/0,c_2/0,c_3/1,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {sqr#,sum#} and constructors {*,+,0,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2} by application of Pre({1,2}) = {3,4}. Here rules are labelled as follows: 1: sqr#(x) -> c_1() 2: sum#(0()) -> c_2() 3: sum#(s(x)) -> c_3(sum#(x)) 4: sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)) * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)) - Weak DPs: sqr#(x) -> c_1() sum#(0()) -> c_2() - Weak TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1,sqr#/1,sum#/1} / {*/2,+/2,0/0,s/1,c_1/0,c_2/0,c_3/1,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {sqr#,sum#} and constructors {*,+,0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:sum#(s(x)) -> c_3(sum#(x)) -->_1 sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)):2 -->_1 sum#(0()) -> c_2():4 -->_1 sum#(s(x)) -> c_3(sum#(x)):1 2:S:sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)) -->_2 sum#(0()) -> c_2():4 -->_1 sqr#(x) -> c_1():3 -->_2 sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)):2 -->_2 sum#(s(x)) -> c_3(sum#(x)):1 3:W:sqr#(x) -> c_1() 4:W:sum#(0()) -> c_2() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: sqr#(x) -> c_1() 4: sum#(0()) -> c_2() * Step 4: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)) - Weak TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1,sqr#/1,sum#/1} / {*/2,+/2,0/0,s/1,c_1/0,c_2/0,c_3/1,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {sqr#,sum#} and constructors {*,+,0,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:sum#(s(x)) -> c_3(sum#(x)) -->_1 sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)):2 -->_1 sum#(s(x)) -> c_3(sum#(x)):1 2:S:sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)) -->_2 sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)):2 -->_2 sum#(s(x)) -> c_3(sum#(x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: sum#(s(x)) -> c_4(sum#(x)) * Step 5: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sum#(x)) - Weak TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1,sqr#/1,sum#/1} / {*/2,+/2,0/0,s/1,c_1/0,c_2/0,c_3/1,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {sqr#,sum#} and constructors {*,+,0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sum#(x)) * Step 6: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sum#(x)) - Signature: {sqr/1,sum/1,sqr#/1,sum#/1} / {*/2,+/2,0/0,s/1,c_1/0,c_2/0,c_3/1,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {sqr#,sum#} and constructors {*,+,0,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_4) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [0] p(+) = [1] x1 + [1] x2 + [0] p(0) = [0] p(s) = [1] x1 + [3] p(sqr) = [0] p(sum) = [0] p(sqr#) = [0] p(sum#) = [9] x1 + [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [0] Following rules are strictly oriented: sum#(s(x)) = [9] x + [27] > [9] x + [0] = c_3(sum#(x)) sum#(s(x)) = [9] x + [27] > [9] x + [0] = c_4(sum#(x)) Following rules are (at-least) weakly oriented: Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 7: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sum#(x)) - Signature: {sqr/1,sum/1,sqr#/1,sum#/1} / {*/2,+/2,0/0,s/1,c_1/0,c_2/0,c_3/1,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {sqr#,sum#} and constructors {*,+,0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))