WORST_CASE(?,O(1)) * Step 1: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__f(X)) -> f(X) f(X) -> n__f(X) f(f(a())) -> c(n__f(g(f(a())))) - Signature: {activate/1,f/1} / {a/0,c/1,g/1,n__f/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,f} and constructors {a,c,g,n__f} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__f(X)) -> c_2(f#(X)) f#(X) -> c_3() f#(f(a())) -> c_4(f#(a())) Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__f(X)) -> c_2(f#(X)) f#(X) -> c_3() f#(f(a())) -> c_4(f#(a())) - Weak TRS: activate(X) -> X activate(n__f(X)) -> f(X) f(X) -> n__f(X) f(f(a())) -> c(n__f(g(f(a())))) - Signature: {activate/1,f/1,activate#/1,f#/1} / {a/0,c/1,g/1,n__f/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,f#} and constructors {a,c,g,n__f} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,4} by application of Pre({1,3,4}) = {2}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: activate#(n__f(X)) -> c_2(f#(X)) 3: f#(X) -> c_3() 4: f#(f(a())) -> c_4(f#(a())) * Step 3: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: activate#(n__f(X)) -> c_2(f#(X)) - Weak DPs: activate#(X) -> c_1() f#(X) -> c_3() f#(f(a())) -> c_4(f#(a())) - Weak TRS: activate(X) -> X activate(n__f(X)) -> f(X) f(X) -> n__f(X) f(f(a())) -> c(n__f(g(f(a())))) - Signature: {activate/1,f/1,activate#/1,f#/1} / {a/0,c/1,g/1,n__f/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,f#} and constructors {a,c,g,n__f} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {}. Here rules are labelled as follows: 1: activate#(n__f(X)) -> c_2(f#(X)) 2: activate#(X) -> c_1() 3: f#(X) -> c_3() 4: f#(f(a())) -> c_4(f#(a())) * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: activate#(X) -> c_1() activate#(n__f(X)) -> c_2(f#(X)) f#(X) -> c_3() f#(f(a())) -> c_4(f#(a())) - Weak TRS: activate(X) -> X activate(n__f(X)) -> f(X) f(X) -> n__f(X) f(f(a())) -> c(n__f(g(f(a())))) - Signature: {activate/1,f/1,activate#/1,f#/1} / {a/0,c/1,g/1,n__f/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,f#} and constructors {a,c,g,n__f} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:activate#(X) -> c_1() 2:W:activate#(n__f(X)) -> c_2(f#(X)) -->_1 f#(X) -> c_3():3 3:W:f#(X) -> c_3() 4:W:f#(f(a())) -> c_4(f#(a())) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: f#(f(a())) -> c_4(f#(a())) 2: activate#(n__f(X)) -> c_2(f#(X)) 3: f#(X) -> c_3() 1: activate#(X) -> c_1() * Step 5: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__f(X)) -> f(X) f(X) -> n__f(X) f(f(a())) -> c(n__f(g(f(a())))) - Signature: {activate/1,f/1,activate#/1,f#/1} / {a/0,c/1,g/1,n__f/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,f#} and constructors {a,c,g,n__f} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))